--%>

Negative deviation

Which one of the following non-ideal solutions shows the negative deviation: (a) CH3COCH3 + CS2   (b) C6H6 + CH3COCH3   (c) CCl4 + CHCl3   (d)  CH3COCH3 + CHCl3

Answer: (d) CH3COCH3 + CHCl3 is non ideal solution which shows negative deviation.

   Related Questions in Chemistry

  • Q : Cations Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Dipole moment direction for the methanol

    Briefly describe the dipole moment direction for the methanol?

  • Q : Changes in matter law of chemical

    changes in matter law of chemical combination

  • Q : Volume hydrogen peroxide Choose the

    Choose the right answer from following. The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : Neutralisation of phosphorous acids

    Provide solution of this question. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H3 PO3) the volume of 0.1 M aqueous KOH solution required is: (a) 40 mL (b) 20 mL (c) 10 mL (d) 60 mL

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Explain polyhalogen compounds with

    Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    Q : What are diazonium salts? The diazonium

    The diazonium salts are represented by the general formula ArN2 +X where X- ion may be anion such as (Cl) ¨, B ¨r, HSO

  • Q : Explain Second Order Rate Equations.

    Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one o