--%>

Describe Thermodynamics Properties

The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.

All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixed, definite values when the state of the system is set by the selection of, for example, a temperature and a pressure.

The properties that we have been with have the symbols V, U, H, S and G. these properties are all interrelated, as you know by thinking of the defining equations such as H = U + PV and G = H - TS.

Suppose the state of the system is changed. The values of the properties of the system change. These property changes must be interrelated.

An example of Maxwell's equations: the dependence of free energy on pressure and that on temperature are given by the partial derivatives,

(∂G/∂P)T = V and (∂G/∂T)P = -S

Since the free energy is a property, the change in free energy will be the same regardless of the order of differentiation with respect to pressure and temperature. We can write

[∂/∂P (∂G/∂T)P]T = [(∂/∂T) (∂G/∂P)T]P

With the equations for the derivatives of G with respect to T and P, this gives us 

(∂S/∂P)T = -(∂V/∂T)P

This derivative relation, who in itself is not at all revealing, is useful in leading us to other relations that give us unexpected insights. It is one of the expressions known as Maxwell's equations.

Pressure and volume dependence of U: for any process, the change in the energy dU of the system is related to the change in the energies of the thermal and mechanical surroundings by

dU = -dUtherm - dU
mech

For a process in which only the mechanical energy is involved, dUmech = P dV. For a reversible process dUtherm = -T dS. By considering this special process we arrive at the relation

dU = T dS - P dV

For a given change in S and V, there will be a particular change in U. thus although we arrived by considering a particular process, it is generally applicable.

Division of equation by dP followed by specification of constant temperature gives

(∂U/∂P)T = T(∂S/∂P)T - P(∂V/∂P)T

The pressure dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂P)T = (VU/∂T)T - (∂V/∂P)T

The corresponding dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂V)T = (∂U/∂P)T (∂P/∂V)T = -(∂V/∂T)P (∂P/∂V)T - P(∂V/∂P)T (∂P/∂V)T

= - T(∂V/∂T)T (∂P/∂V)T - P

The (∂V/∂T) P term can be expressed from dV = (∂V/∂T) P dT + (∂V/∂T)T dP by specifying constant volume, and rearranging to

(∂V/∂T)= - (∂V/∂P)T (∂P/∂T)V    

Now the equation for (∂U/∂V)T becomes

(∂U/∂V)T = T(∂P/∂T)V - P

Energy of an ideal gas

The internal energy U of a sample of an ideal gas depends on only the temperature, not on the pressure or volume of the sample. This ideal was justified by the kinetic molecular theory. We can show that it holds without stepping out of classical thermodynamics.

We can use conformity to the equation PV = nRT as a definition of ideal gas behaviour. If this relation is used to evaluate the terms, we arrive at

(∂U/∂P)T = 0 and (UV/∂V)T = 0

Thus, without any stipulation other than PV = nRT, arrive at the conclusion that the internal energy of an ideal gas depends on only the temperature.

   Related Questions in Chemistry

  • Q : Problem on colligative properties

    Choose the right answer from following. The magnitude of colligative properties in all colloidal dispersions is : (a) Lowerthan solution (b)Higher than solution(c) Both (d) None

  • Q : Quastion of finding vapour pressure

    Vapour pressure of CCl425Degree C at is 143mm of Hg0.5gm of a non-volatile solute (mol. wt. = 65) is dissolved in 100ml CCl4 .Find the vapour pressure of the solution (Density of CCl4 = = 1.58g /cm2): (a)141.43mm (b)

  • Q : Question relatede to calculate molarity

    Select the right answer of the question. What is molarity of a solution of HCl that contains 49% by weight of solute and whose specific gravity is 1.41 : (a) 15.25 (b) 16.75 (c) 18.92 (d) 20.08

  • Q : Problem on solutions The 2N aqueous

    The 2N aqueous solution of H2S04 contains: (a) 49 gm of H2S04 per litre of solution (b) 4.9 gm of H2S04 per litre of solution (c) 98 gm of H2S04

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Explain Second Order Rate Equations.

    Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one o

  • Q : Molality of Sulfuric acid Choose the

    Choose the right answer from following. The molality of 90% H2SO4 solution is: [density=1.8 gm/ml]  (a)1.8 (b) 48.4 (c) 9.18 (d) 94.6

  • Q : Molecular energies and speeds The

    The average translational kinetic energies and speeds of the molecules of a gas can be calculated.The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m