Describe Thermodynamics Properties

The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.

All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixed, definite values when the state of the system is set by the selection of, for example, a temperature and a pressure.

The properties that we have been with have the symbols V, U, H, S and G. these properties are all interrelated, as you know by thinking of the defining equations such as H = U + PV and G = H - TS.

Suppose the state of the system is changed. The values of the properties of the system change. These property changes must be interrelated.

An example of Maxwell's equations: the dependence of free energy on pressure and that on temperature are given by the partial derivatives,

(∂G/∂P)T = V and (∂G/∂T)P = -S

Since the free energy is a property, the change in free energy will be the same regardless of the order of differentiation with respect to pressure and temperature. We can write

[∂/∂P (∂G/∂T)P]T = [(∂/∂T) (∂G/∂P)T]P

With the equations for the derivatives of G with respect to T and P, this gives us

(∂S/∂P)T = -(∂V/∂T)P

This derivative relation, who in itself is not at all revealing, is useful in leading us to other relations that give us unexpected insights. It is one of the expressions known as Maxwell's equations.

Pressure and volume dependence of U: for any process, the change in the energy dU of the system is related to the change in the energies of the thermal and mechanical surroundings by

dU = -dUtherm - dU
mech

For a process in which only the mechanical energy is involved, dUmech = P dV. For a reversible process dUtherm = -T dS. By considering this special process we arrive at the relation

dU = T dS - P dV

For a given change in S and V, there will be a particular change in U. thus although we arrived by considering a particular process, it is generally applicable.

Division of equation by dP followed by specification of constant temperature gives

(∂U/∂P)T = T(∂S/∂P)T - P(∂V/∂P)T

The pressure dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂P)T = (VU/∂T)T - (∂V/∂P)T

The corresponding dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂V)T = (∂U/∂P)T (∂P/∂V)T = -(∂V/∂T)P (∂P/∂V)T - P(∂V/∂P)T (∂P/∂V)T

= - T(∂V/∂T)T (∂P/∂V)T - P

The (∂V/∂T) P term can be expressed from dV = (∂V/∂T) P dT + (∂V/∂T)T dP by specifying constant volume, and rearranging to

(∂V/∂T)= - (∂V/∂P)T (∂P/∂T)V

Now the equation for (∂U/∂V)T becomes

(∂U/∂V)T = T(∂P/∂T)V - P

Energy of an ideal gas

The internal energy U of a sample of an ideal gas depends on only the temperature, not on the pressure or volume of the sample. This ideal was justified by the kinetic molecular theory. We can show that it holds without stepping out of classical thermodynamics.

We can use conformity to the equation PV = nRT as a definition of ideal gas behaviour. If this relation is used to evaluate the terms, we arrive at

(∂U/∂P)T = 0 and (UV/∂V)T = 0

Thus, without any stipulation other than PV = nRT, arrive at the conclusion that the internal energy of an ideal gas depends on only the temperature.

#### Related Questions in Chemistry

• ##### Q :Non-ideal Gases Fugacity The fugacity

The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction

• ##### Q :Structure of a DNA molecule Elaborate

Elaborate the structure of a DNA molecule?

• ##### Q :Relative lowering of vapour pressure

explain the process of relative lowering of vapour pressure

• ##### Q :What is Elevation in boiling point? The

The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

• ##### Q :Explain alcohols and phenols in organic

Alcohols and phenols are the compounds

• ##### Q :What is ortho effect? Orthosubstituted

Orthosubstituted anilines are generally weaker bases than aniline irrespective of the electron releasing or electron withdrawing nature of the substituent. This is known as ortho effect and may probably be due to combined electronic and steric factors.The overall basic strength of ort

• ##### Q :Molarity based question Help me to

Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

• ##### Q :6. 20 gm of hydrogen is present in 5

6. 20 gm of hydrogen is present in 5 litre vessel. The molar concentration of hydrogen is

• ##### Q :Question on Raoults law Give me answer

Give me answer of this question. For a dilute solution, Raoult's law states that: (a) The lowering of vapour pressure is equal to mole fraction of solute (b) The relative lowering of vapour pressure is equal to mole fraction of solute (c) The relative lowering of v

• ##### Q :Equimolar solutions Select the right

Select the right answer of the question. Equimolar solutions in the same solvent have : (a)Same boiling point but different freezing point (b) Same freezing point but different boiling poin (c)Same boiling and same freezing points (d) Different boiling and differe