--%>

Describe Thermodynamics Properties

The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.

All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixed, definite values when the state of the system is set by the selection of, for example, a temperature and a pressure.

The properties that we have been with have the symbols V, U, H, S and G. these properties are all interrelated, as you know by thinking of the defining equations such as H = U + PV and G = H - TS.

Suppose the state of the system is changed. The values of the properties of the system change. These property changes must be interrelated.

An example of Maxwell's equations: the dependence of free energy on pressure and that on temperature are given by the partial derivatives,

(∂G/∂P)T = V and (∂G/∂T)P = -S

Since the free energy is a property, the change in free energy will be the same regardless of the order of differentiation with respect to pressure and temperature. We can write

[∂/∂P (∂G/∂T)P]T = [(∂/∂T) (∂G/∂P)T]P

With the equations for the derivatives of G with respect to T and P, this gives us 

(∂S/∂P)T = -(∂V/∂T)P

This derivative relation, who in itself is not at all revealing, is useful in leading us to other relations that give us unexpected insights. It is one of the expressions known as Maxwell's equations.

Pressure and volume dependence of U: for any process, the change in the energy dU of the system is related to the change in the energies of the thermal and mechanical surroundings by

dU = -dUtherm - dU
mech

For a process in which only the mechanical energy is involved, dUmech = P dV. For a reversible process dUtherm = -T dS. By considering this special process we arrive at the relation

dU = T dS - P dV

For a given change in S and V, there will be a particular change in U. thus although we arrived by considering a particular process, it is generally applicable.

Division of equation by dP followed by specification of constant temperature gives

(∂U/∂P)T = T(∂S/∂P)T - P(∂V/∂P)T

The pressure dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂P)T = (VU/∂T)T - (∂V/∂P)T

The corresponding dependence of internal energy on volume can be obtained first writing the relation

(∂U/∂V)T = (∂U/∂P)T (∂P/∂V)T = -(∂V/∂T)P (∂P/∂V)T - P(∂V/∂P)T (∂P/∂V)T

= - T(∂V/∂T)T (∂P/∂V)T - P

The (∂V/∂T) P term can be expressed from dV = (∂V/∂T) P dT + (∂V/∂T)T dP by specifying constant volume, and rearranging to

(∂V/∂T)= - (∂V/∂P)T (∂P/∂T)V    

Now the equation for (∂U/∂V)T becomes

(∂U/∂V)T = T(∂P/∂T)V - P

Energy of an ideal gas

The internal energy U of a sample of an ideal gas depends on only the temperature, not on the pressure or volume of the sample. This ideal was justified by the kinetic molecular theory. We can show that it holds without stepping out of classical thermodynamics.

We can use conformity to the equation PV = nRT as a definition of ideal gas behaviour. If this relation is used to evaluate the terms, we arrive at

(∂U/∂P)T = 0 and (UV/∂V)T = 0

Thus, without any stipulation other than PV = nRT, arrive at the conclusion that the internal energy of an ideal gas depends on only the temperature.

   Related Questions in Chemistry

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?

  • Q : Explain equilibrium and molecular

    The equilibrium constant can be treated as a particular type of molecular distribution. Consider the simplest gas-phase reaction, one in which molecules of A are converted to molecules of B. the reaction, described by the equation

    Q : What are haloalkanes and haloarenes and

    Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl grou

  • Q : Molecular weight of substance The

    The boiling point of a solution of 0.11 gm of a substance in 15 gm of ether was found to be 0.1oC higher than that of the pure ether. The molecular weight of the substance will be (Kb = 2.16)       (a) 148 &nbs

  • Q : The Liver Is Responsible For Much Of

    The Liver Is Responsible For Much Of The Pentose Phosphate Activity Explain

  • Q : What is chemisorption or chemical

    When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing b

  • Q : What are halogen oxoacids? Fluorine

    Fluorine yields only one oxyacid, hypo

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat