Direction of dipole moment expected for hydrogen bromide
Illustrate the direction of the dipole moment expected for hydrogen bromide?
Expert
An HBr molecule is linear (clearly, as it comprises two atoms only). The dipole moment is a vector, parallel to a bond, pointing to the partially positively charged atom, i.e., in this situation, hydrogen. Magnitude of the dipole moment is difference in the fractional electrical charges on every atom times the spatial separation of atoms in that bond. In a molecule with more than one bond (more than two atoms), the dipole moment of all bond must be added vectorially and the resulting vector will determine dipole moment of that molecule. For example, carbon dioxide contains two carbon-oxygen double bonds of high polarity, but because molecule is linear, and individual dipoles oppose each other, carbon dioxide molecule has no left dipole moment.
Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms
How many electrons are present in a benzene?
What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4
Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.
The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.
Give me answer of this question. A solution contains 1.2046 x 1024 hydrochloric acid molecules in one dm3 of the solution. The strength of the solution is: (a) 6 N (b) 2 N (c) 4 N (d) 8 N
Particles of quartz are packed by:(i) Electrical attraction forces (ii) Vander Waal's forces (iii) Covalent bond forces (iv) Strong electrostatic force of attraction Answer: (iii)
Can someone please help me in getting through this problem. Which of the given concentration factor is affected by the change in temperature: (1) Molarity (2) Molality (3) Mole fraction (4) Weight fraction
Provide solution of this question. According to Raoult's law the relative lowering of vapour pressure of a solution of volatile substance is equal to: (a) Mole fraction of the solvent (b) Mole fraction of the solute (c) Weight percentage of a solute (d) Weight perc
Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180
18,76,764
1960388 Asked
3,689
Active Tutors
1424655
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!