--%>

Relationship between Pressure and Temperature

The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.

We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific, we deal with the liquid vapor equilibrium.

The free energy of 1 mol of liquid is equal to the free energy of 1 mol of the vapor that is in equilibrium with the liquid. With subscript l denoting liquid and v denoting vapor, we can write

G- Gv                                                         (1)

And for an infinitesimal change in the system for which equilibrium is maintained, the differential equation

dGl = dGv can be written.                       (2)    

Since only one component is present and the composition is not variable, changes in the molar free energy of the liquid or the vapor can be expressed by the total differential

dG = (∂G/∂P)T dP + (∂G/∂T)P dT              (3)

The partial derivatives are related to the molar volume and entropy and thus, by eq. we can write for a molar amount in each phase

dG = V dP - S dT

Recognizing that although various temperatures and pressures can be considered and both phases are at the same temperature and pressure, we can apply this equation to the liquid and to the equilibrium vapor to give

Vl dP - Sl dT = Vv dP - Sv dT

Or

903_Pressure temperature.png 

More generally

dP/dT = ΔS/ΔV where ΔS and ΔV signify changes from the two phases being considered.

We thus have an expression for the slope of the phase equilibrium lines on P-versus-T diagram.

The large value of ΔV for solid-vapor or liquid-vapor phases is related to small values of dP/dTand thus flatter curves on P-versus-T diagram than for solid liquid phases. Also, all curves tend to have positive slopes because the molar entropies and volumes both follow the same vapor greater than liquid and liquid greater than solid. The most notable exception is that for ice-liquid water, where ΔS and ΔV have opposite signs.

Example: the freezing point of eater at 1-bar, or 1-atm, pressure is 0°C, at this temperature the density of liquid water is 1.000 g mL-1, and that of ice is 0.917 g mL-1. The increase in enthalpy for the melting at this temperature is 6010 J mol-1. Estimate the freezing point at a pressure of 1000 bar.

Solution: consider the process

H2O(s) 2490_Pressure temperature3.png H2O(l)

From the given data

ΔH = 6010 J mol
-1

891_Pressure temperature1.png 

= 18.02 mL - 19.65 mL = -1.63 mL = -1.63 × 10-6 m3

The relation dP/dT = ΔS/ ΔV, with ΔS = ΔH/T and inverted for the interpretation we use here, becomes

dT/dP = T ΔV/ΔH 

The melting point of ice is found to change little even with a large pressure change. If T is treated as a constant, and constant values for ΔV and ΔH are assumed, we obtained

1320_Pressure temperature2.png 

= 0.0074 K bar-1

The melting point at 1000 bar is lower than that at 1 bar by 7.4 K = 7.4°C. if we recognize thatT, in dT/dP = T ΔV/ ΔH, is a variable, but we still treat ΔV and ΔH as constants, integration fromT1 to T2 as the pressure changes from P1 to P2 gives 

1640_Pressure temperature4.png 

259_Pressure temperature5.png 

With T= 273 K and P1 = 1 bar, calculation of T2 for P2 = 1000 bar = 108 Pa now gives

1705_Pressure temperature6.png 

= 273e-0.0271 = 273(0.973)

= 265.7 K = -7.3°C.
 

   Related Questions in Chemistry

  • Q : Chemical formula of detergent Describe

    Describe the chemical formula of detergent?

  • Q : Molar solution of sulphuric acid Choose

    Choose the right answer from following. The molar solution of sulphuric acid is equal to: (a) N solution (b) 2Nsolution (c) N/2solution (d) 3Nsolution

  • Q : Amines arrange in decreasing order of

    arrange in decreasing order of basicity pi pyridine,pyridine,pyrrole, morphine

  • Q : Molarity of cane sugar solution 171 g

    171 g of cane sugar (C12H22O11)  is dissolved in one litre of water. Find the molarity of the solution: (i) 2.0 M (ii) 1.0 M (iii) 0.5 M (iv) 0.25 M Choose the right answer from above.

  • Q : Relative lowering of the vapour pressure

    Choose the right answer from following.The relative lowering of the vapour pressure is equal to the ratio between the number of: (a) Solute moleules and solvent molecules (b) Solute molecules and the total molecules in the solution (c) Solvent molecules and the tota

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Molar mass lculwhat is the equation for

    lculwhat is the equation for caating molar mass of non volatile solute

  • Q : Mole fraction of solute The mole

    The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.

  • Q : Problems related to entropy change A)

    A) Two compartments each of 1 m3 capacity are joined by a valve and insulated from the surroundings and from one another. One compartment has saturated steam at 683.6 kPa and the other contains steam at the same temperature but at a pressure of 101.3 kPa. T

  • Q : Theory of one dimensional motion For

    For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to