--%>

Avogadro's hypothesis Law Principle

Avogadro's hypothesis Law Principle- Berzelius, a chemist tried to correlate Dalton's atomic theory & Gay-Lussac's Law of gaseous volumes. According to his Berzelius hypothesis Equal volumes of all gases under similar conditions of temperature & pressure contain equal number of atoms e.g.

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

Acc to Berzelius hypothesis:

Hydrogen (1/2 atom) + Chlorine (1/2 atom)->HCl (1 compound atom)

But this is indirect conflict of Dalton's atomic theory, so it was rejected.

So a new hypothesis was given by Avogardo.

According to him, An atom is a smallest particle of an element which can take part in a chemical reaction which may or may not be capable of independent existence.

molecule is the smallest particle of an element or of a compound which have an independent existence. So the smallest particle of a gas is a molecule not an atom, so the volume of gas must be related to the number of molecules rather than atoms.

According to Avogrado's Hypothesis-Equal volume of all gases under similar conditions of temperature & pressure contain equal number of molecules. This is able to explain all the gaseous reactions & now known as Avogrado's Law or Avogrado's principle.

For example-

Hydrogen (1 vol) + Chlorine (1 vol)->HCl (2 vol)

By Avogrado's hypothesis:

n molecule+n molecule gives 2n molecule

1/2molecule of both [Hydrogen + Chlorine] ->HCl (1 molecule)

 Applications of this hypothesis-

(1)In the calculation of atomicity of elementary gases-Atomicity is defined as the number of atoms of the element present in one molecule of the substance e.g. atomicity of N2 is two & O3 is three.

(2)To find the relationship between molecular mass & vapour density of gas-(relative density)

Vapour density of gas=Density of gas/density of hydrogen

           =Mass of [certain vol of gas/same volume of H2] at STP

            =Mass of [n molecule of gas/ n molecule of H2] at STP

            =Mass of [1 molecule of gas/ 1 molecule of H2] at STP

 

                          Vapour density=Molecular Mass/2

(3)To find the relationship between mass & volume of gas-As the

Molecular Mass=Vapour density x 2

Or Molecular Mass=Mass of 22.4 L of gas at STP

Thus 22.4 L of any gas at STP weight is equal to the molecular mass of the gas expressed in grams which is called Gram-Molecular Volume Law (G.M.V.).

   Related Questions in Chemistry

  • Q : Calculating total number of moles

    Choose the right answer from following. While 90 gm of water is mixed with 300 gm of acetic acid. The total number of moles will be: (a)5 (b)10 (c)15 (d)20

  • Q : Solubility product On passing H 2 S gas

    On passing H2S gas through a particular solution of Cu+ and Zn+2 ions, first CuS is precipitated because : (a)Solubility product of CuS is equal to the ionic product of ZnS (b) Solubility product of CuS is equal to the solubility product

  • Q : How alkyl group reactions takes place?

    Halogenations: ethers react with chlorine and bromine to give substitution products. The extent of halogenations depends upon the conditions of reacti

  • Q : Problem on thermodynamic equilibrium In

    In the manufacture of sulphuric acid by the contact process, S02 is oxidized to SO3 over a vanadium catalyst: The reactor is adiabatic and operates at atmospheric pressure. The gases enter the reactor at 410&d

  • Q : What is Henry law constant and its

    1. The units of Henry Law constant are same as those of pressure, i.e. torr or h bar. 2. Different gases have dissimilar values of Henry law constant. The values of KH for some gases in water are given in tabl

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Influence of temperature Can someone

    Can someone please help me in getting through this problem. With increase of temperature, which of the following changes: (i) Molality (ii) Weight fraction of solute (iii) Fraction of solute present in water (iv) Mole fraction.

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop