--%>

Diffusion Molecular View

When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.

To see how the experimental coefficients can be treated to properties of the system and particularly of the solute macromolecules we take a molecular view of the diffusion process. Consider across a distance interval dx over which the concentration changes from c to c-dc. The force that drives the molecules to the ore dilute region can be related to the difference in the, molar free energy of the solute at concentration c and at concentration c-dc. If deal behaviour is assumed, the free energy differences per molecule is

Gc - dc - Gc = RT/N In (c -dc)/c 

Or

dG = RT/N In (1 - dc/c) - RT/N dc/c  where the relation In (1 - y) = -y for small y has been used.

This free energy difference corresponds to the mechanical energy needed to transfer one macromolecule across the distance dx. This energy can therefore be written as a force times the distance dx. Thud dG = driving force × dx, or

Driving force = dG/dx = RT/N 1/c dc/dx

A frictional force sets in and balances this diffusion force when some constant velocity is reached. The frictional force exerted by a viscous solvent fluid of viscosity η has been derived for a macroscopic sphere of radius r by G. G strokes as 

Frictional force = 6∏rη dx/dt

It appears suitable to apply this expression to the motion of reasonably spherical macromolecules. The diffusion velocity increases, therefore, until the force balances that equation. Then

6∏rη dx/dt = - RT/N 1/c dc/dx 

Or

cdx/dt = - RT/(6∏rη) dc/dx

Since c implies a mass per unit volume measure of concentrations, the product c dx/dt can be interrupted as the rate with which the diffusing substance moves through a unit cross section at x. this follows suggests, from the fact that dx/dt, the average diffusion velocity in the x direction, is the distance the diffusing molecules travel per unit time. Thus all the molecules within a distance dx/dt of a cross section will pass cross section in unit time. These molecules are in a volume equal to dx/dt times the cross section area. The mass of these molecules is the product of this volume and the concentration expressed as mass per unit volume. Thus c dx/dt is the amount per unit time, i.e. the rate with which the solute passes through the cross section. We can write now

D ∂c/∂x = - RT/(6∏rη) ∂c/∂x

This leads to the identification

D = RT/(6∏rη) 

And 6∏rη = RT/DN

Measurements of D and η could therefore lead to a value of the radius r for the macromolecule. Such a procedure is a little unsatisfactory. Molecules do not necessarily obey Strokes' law, even if they are spherical. Furthermore, macromolecules will generally be solvated and in moving through the solution will to some extent vary along this salvation layer. Equation is important however, in that it provides a way of determining the effective value of the group of terms 6∏rη for a solute characterized by molecules with radius r and a solvent characterized by viscosity η

   Related Questions in Chemistry

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Explain group 15 elements. The various

    The various elements

  • Q : Entropy on molecular basis. The

    The equation S = k in W relates entropy to W, a measure of the number of different molecular level arrangements of the system.In the preceding developments it was unnecessary to attempt to reach any "explana

  • Q : Explain Phase Rule The relation between

    The relation between the number of phases, components and the degrees of freedom is known as the phase rule. One constituent systems: the identification of an area on a P-versus-T with one phase of a component system illustrates the two degrees of freedom that

  • Q : Particles of quartz Particles of quartz

    Particles of quartz are packed by:(i) Electrical attraction forces  (ii) Vander Waal's forces  (iii) Covalent bond forces  (iv) Strong electrostatic force of attraction Answer: (iii)

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Molarity of the final mixture Can

    Can someone please help me in getting through this problem. Two solutions of a substance (that is, non electrolyte) are mixed in the given manner 480 ml of 1.5M first solution + 520 ml of 1.2M second solution. Determine the molarity of the final mixture