--%>

Diffusion Molecular View

When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.

To see how the experimental coefficients can be treated to properties of the system and particularly of the solute macromolecules we take a molecular view of the diffusion process. Consider across a distance interval dx over which the concentration changes from c to c-dc. The force that drives the molecules to the ore dilute region can be related to the difference in the, molar free energy of the solute at concentration c and at concentration c-dc. If deal behaviour is assumed, the free energy differences per molecule is

Gc - dc - Gc = RT/N In (c -dc)/c 

Or

dG = RT/N In (1 - dc/c) - RT/N dc/c  where the relation In (1 - y) = -y for small y has been used.

This free energy difference corresponds to the mechanical energy needed to transfer one macromolecule across the distance dx. This energy can therefore be written as a force times the distance dx. Thud dG = driving force × dx, or

Driving force = dG/dx = RT/N 1/c dc/dx

A frictional force sets in and balances this diffusion force when some constant velocity is reached. The frictional force exerted by a viscous solvent fluid of viscosity η has been derived for a macroscopic sphere of radius r by G. G strokes as 

Frictional force = 6∏rη dx/dt

It appears suitable to apply this expression to the motion of reasonably spherical macromolecules. The diffusion velocity increases, therefore, until the force balances that equation. Then

6∏rη dx/dt = - RT/N 1/c dc/dx 

Or

cdx/dt = - RT/(6∏rη) dc/dx

Since c implies a mass per unit volume measure of concentrations, the product c dx/dt can be interrupted as the rate with which the diffusing substance moves through a unit cross section at x. this follows suggests, from the fact that dx/dt, the average diffusion velocity in the x direction, is the distance the diffusing molecules travel per unit time. Thus all the molecules within a distance dx/dt of a cross section will pass cross section in unit time. These molecules are in a volume equal to dx/dt times the cross section area. The mass of these molecules is the product of this volume and the concentration expressed as mass per unit volume. Thus c dx/dt is the amount per unit time, i.e. the rate with which the solute passes through the cross section. We can write now

D ∂c/∂x = - RT/(6∏rη) ∂c/∂x

This leads to the identification

D = RT/(6∏rη) 

And 6∏rη = RT/DN

Measurements of D and η could therefore lead to a value of the radius r for the macromolecule. Such a procedure is a little unsatisfactory. Molecules do not necessarily obey Strokes' law, even if they are spherical. Furthermore, macromolecules will generally be solvated and in moving through the solution will to some extent vary along this salvation layer. Equation is important however, in that it provides a way of determining the effective value of the group of terms 6∏rη for a solute characterized by molecules with radius r and a solvent characterized by viscosity η

   Related Questions in Chemistry

  • Q : Which solution will have highest

    Which solution will have highest boiling point:(a) 1% solution of glucose in water  (b) 1% solution of sodium chloride in water  (c) 1% solution of zinc sulphate in water  (d) 1% solution of urea in waterAnswer: (b) Na

  • Q : Problem on vapour pressure and mole

    Provide solution of this question. The vapour pressure of a solvent decreased by 10 mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrea

  • Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox

  • Q : Negative deviation Which one of the

    Which one of the following non-ideal solutions shows the negative deviation: (a) CH3COCH3 + CS2   (b) C6H6 + CH3COCH3   (c) CCl4 + CHCl3  

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre

  • Q : Henry law question Answer the following

    Answer the following qustion. The definition “The mass of a gas dissolved in a particular mass of a solvent at any temperature is proportional to the pressure of gas over the solvent” is: (i) Dalton’s Law of Parti

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?

  • Q : Iso-electronic species Which ion has

    Which ion has the lowest radius from the following ions(a) Na+  (b) Mg2+  (c) Al3+  (d) Si4+ Answer: (d) All are the iso-electronic species but Si

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : Concentration of Sodium chloride

    Provide solution of this question. If 25 ml of 0.25 M NaCl solution is diluted with water to a volume of 500ml the new concentration of the solution is : (a) 0.167 M (b) 0.0125 M (c) 0.833 M (d) 0.0167 M