--%>

Diffusion Molecular View

When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.

To see how the experimental coefficients can be treated to properties of the system and particularly of the solute macromolecules we take a molecular view of the diffusion process. Consider across a distance interval dx over which the concentration changes from c to c-dc. The force that drives the molecules to the ore dilute region can be related to the difference in the, molar free energy of the solute at concentration c and at concentration c-dc. If deal behaviour is assumed, the free energy differences per molecule is

Gc - dc - Gc = RT/N In (c -dc)/c 

Or

dG = RT/N In (1 - dc/c) - RT/N dc/c  where the relation In (1 - y) = -y for small y has been used.

This free energy difference corresponds to the mechanical energy needed to transfer one macromolecule across the distance dx. This energy can therefore be written as a force times the distance dx. Thud dG = driving force × dx, or

Driving force = dG/dx = RT/N 1/c dc/dx

A frictional force sets in and balances this diffusion force when some constant velocity is reached. The frictional force exerted by a viscous solvent fluid of viscosity η has been derived for a macroscopic sphere of radius r by G. G strokes as 

Frictional force = 6∏rη dx/dt

It appears suitable to apply this expression to the motion of reasonably spherical macromolecules. The diffusion velocity increases, therefore, until the force balances that equation. Then

6∏rη dx/dt = - RT/N 1/c dc/dx 

Or

cdx/dt = - RT/(6∏rη) dc/dx

Since c implies a mass per unit volume measure of concentrations, the product c dx/dt can be interrupted as the rate with which the diffusing substance moves through a unit cross section at x. this follows suggests, from the fact that dx/dt, the average diffusion velocity in the x direction, is the distance the diffusing molecules travel per unit time. Thus all the molecules within a distance dx/dt of a cross section will pass cross section in unit time. These molecules are in a volume equal to dx/dt times the cross section area. The mass of these molecules is the product of this volume and the concentration expressed as mass per unit volume. Thus c dx/dt is the amount per unit time, i.e. the rate with which the solute passes through the cross section. We can write now

D ∂c/∂x = - RT/(6∏rη) ∂c/∂x

This leads to the identification

D = RT/(6∏rη) 

And 6∏rη = RT/DN

Measurements of D and η could therefore lead to a value of the radius r for the macromolecule. Such a procedure is a little unsatisfactory. Molecules do not necessarily obey Strokes' law, even if they are spherical. Furthermore, macromolecules will generally be solvated and in moving through the solution will to some extent vary along this salvation layer. Equation is important however, in that it provides a way of determining the effective value of the group of terms 6∏rη for a solute characterized by molecules with radius r and a solvent characterized by viscosity η

   Related Questions in Chemistry

  • Q : Determining Mole fraction of water Can

    Can someone please help me in getting through this problem. The mole fraction of water in 20% aqueous solution of H2O2 is: (a) 77/68 (b) 68/77 (c) 20/80  (d) 80/20

  • Q : Lowering of vapour pressure Help me to

    Help me to go through this problem. Lowering of vapour pressure is highest for: (a) urea (b) 0.1 M glucose (c) 0.1M MgSo4 (d) 0.1M BaCl2

  • Q : Explain Ionic Bond with examples. The

    The bonding in ionic molecules can be described with a coulombic attractive term.For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulom

  • Q : Avogadro's hypothesis Law Principle

    Avogadro's hypothesis Law Principle- Berzelius, a chemist tried

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.

  • Q : Dependcy of colligative properties

    Colligative properties of a solution depends upon: (a) Nature of both solvent and solute (b) The relative number of solute and solvent particles (c) Nature of solute only (d) Nature of solvent only

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop

  • Q : Explain group 15 elements. The various

    The various elements

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem