--%>

Describe First Order Rate Equation

The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation.

Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions for the dependence of the concentrations on time. We generally use the integrated rate equation that is obtained to deduce the order of a reaction.

A first order reaction is one for which, at a given temperature, the rate of the reaction depends only on the first power of the concentration of a single reacting species. If the concentrations of this species is represented by c (for solutions, the units of moles per litre are ordinarily used), and if the volume of the system remains essentially constant during the course of the reaction, the first order rate equation can be written

-dc/dt = kc

The rate of constant k is then a positive quantity and has the units of the reciprocal of time.

Integrated rate equation: the experimental results obtained in a study of the rate of a reaction are usually values of c or some related to c at various times. Such data can best be compared with the integrated form of the first order rate equation. If the concentration at time t = 0 is c0, and if at some later time t the concentration has fallen to c, the integration gives

481_First order reactions.png 

With -In (c/c0) = In (c0/c), the integration can be written as

In c0/c = kt

Sometimes a more convenient form is

In c = -kt + In c0

A reaction can therefore be said to be first order if a plot of In (c0/c) or In c versus t gives a straight line. If a straight line is obtained, the slope of the line can be used to give the value of the rate constant k. an alternative to this graphical procedure is the calculation of a value of kfrom the individual measurements of c at the various times t, for example. The reaction is classified as first order if all the data lead to essentially the same values for k, that is, if it is satisfies with k as a constant.

Example: the rate of conversion of tert-butyl bromide to tert-butyl alcohol, (CH3)3CBr + H2O 1598_First order reactions1.png (CH3)3COH + HBr, has been studied and some concentration-time results are found in table given below. Verify that the reaction is first order, and deduce the values of the rate constant at the two temperatures.

Solution: from the data at each temperature we calculate In (c0/c) values. Then the graphical display shows a plot of In (c0/c) versus t is constructed. The straight lines, each going through the origin show that at both temperatures the data conform to the integrated first order relation. The slopes give the values of the rate constants 

K = 0.00082 min-1 = 0.137 × 10-4 s-1 [25°C]    

K = 0.0142 min-1 = 2.37 × 10-4 s-1 [50°C]    


Concentration of tert butyl bromide as a function of time for the reaction (CH3)3CBr + H2O 1598_First order reactions1.png (CH3)3COH + HBr in a 10% water, 90% acetone solvent

At 25°C  At 50°C
Time, h (CH3)3CBr, Mol L-1 Time, min (CH3)3CBr, Mol L-1
0 0.1039 0 0.1056
3.15 0.0896 9 0.0961
6.20 0.0776 18 0.0856
10.0 0.0639 27 0.0767
13.5 0.0529 40 0.0645
18.3 0.0353 54 0.0536
26.0 0.0270 72 0.0432
30.8 0.0207 105 0.0270
37.3 0.0142 135 0.0174
43.8 0.0101 180 0.0089

   Related Questions in Chemistry

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : How to calculate solutions molar

    The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance. The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that th

  • Q : Molecular basis of third law. The

    The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be

  • Q : Precipitation problem On passing H 2 S 

    On passing H2S  gas through a solution of Cu+ and Zn+2 ions, CuS is precipitated first because: (i) Solubility product of CuS is equal to the ionic product of ZnS (ii) Solubility product of CuS is equal to the solubility product o

  • Q : Application of colligative properties

    Choose the right answer from following. Colligative properties are used for the determination of: (a) Molar Mass (b) Equivalent weight (c) Arrangement of molecules (d) Melting point and boiling point (d) Both (a) and (b)  

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Explain the process of adsorption in

    The process of adsorption can occurs in solutions also. This implies that the solid surfaces can also adsorb solutes from solutions. Some clarifying examples are listed below: (i) When an aqueous solution of ethano

  • Q : Number of moles of potassium chloride

    Choose the right answer from following. The number of moles of KCL in 1000ml of 3 molar solution is: (a)1 (b)2 (c)3 (d)1.5

  • Q : Problem on melting of ice A) It has

    A) It has been suggested that the surface melting of ice plays a role in enabling speed skaters to achieve peak performance. Carry out the following calculation to test this hypothesis. Suppose that the width of the skate in contact with the ice has been reduced by sh

  • Q : Coordination compounds discuss the

    discuss the practical uses of coordination compounds, give reactions involves and explain whats happening in the process