--%>

Describe First Order Rate Equation

The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation.

Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions for the dependence of the concentrations on time. We generally use the integrated rate equation that is obtained to deduce the order of a reaction.

A first order reaction is one for which, at a given temperature, the rate of the reaction depends only on the first power of the concentration of a single reacting species. If the concentrations of this species is represented by c (for solutions, the units of moles per litre are ordinarily used), and if the volume of the system remains essentially constant during the course of the reaction, the first order rate equation can be written

-dc/dt = kc

The rate of constant k is then a positive quantity and has the units of the reciprocal of time.

Integrated rate equation: the experimental results obtained in a study of the rate of a reaction are usually values of c or some related to c at various times. Such data can best be compared with the integrated form of the first order rate equation. If the concentration at time t = 0 is c0, and if at some later time t the concentration has fallen to c, the integration gives

481_First order reactions.png 

With -In (c/c0) = In (c0/c), the integration can be written as

In c0/c = kt

Sometimes a more convenient form is

In c = -kt + In c0

A reaction can therefore be said to be first order if a plot of In (c0/c) or In c versus t gives a straight line. If a straight line is obtained, the slope of the line can be used to give the value of the rate constant k. an alternative to this graphical procedure is the calculation of a value of kfrom the individual measurements of c at the various times t, for example. The reaction is classified as first order if all the data lead to essentially the same values for k, that is, if it is satisfies with k as a constant.

Example: the rate of conversion of tert-butyl bromide to tert-butyl alcohol, (CH3)3CBr + H2O 1598_First order reactions1.png (CH3)3COH + HBr, has been studied and some concentration-time results are found in table given below. Verify that the reaction is first order, and deduce the values of the rate constant at the two temperatures.

Solution: from the data at each temperature we calculate In (c0/c) values. Then the graphical display shows a plot of In (c0/c) versus t is constructed. The straight lines, each going through the origin show that at both temperatures the data conform to the integrated first order relation. The slopes give the values of the rate constants 

K = 0.00082 min-1 = 0.137 × 10-4 s-1 [25°C]    

K = 0.0142 min-1 = 2.37 × 10-4 s-1 [50°C]    


Concentration of tert butyl bromide as a function of time for the reaction (CH3)3CBr + H2O 1598_First order reactions1.png (CH3)3COH + HBr in a 10% water, 90% acetone solvent

At 25°C  At 50°C
Time, h (CH3)3CBr, Mol L-1 Time, min (CH3)3CBr, Mol L-1
0 0.1039 0 0.1056
3.15 0.0896 9 0.0961
6.20 0.0776 18 0.0856
10.0 0.0639 27 0.0767
13.5 0.0529 40 0.0645
18.3 0.0353 54 0.0536
26.0 0.0270 72 0.0432
30.8 0.0207 105 0.0270
37.3 0.0142 135 0.0174
43.8 0.0101 180 0.0089

   Related Questions in Chemistry

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop

  • Q : Problem on volumetric flow rate Methane

    Methane containing 4 mol% N2 is flowing through a pipeline at 105.1 kpa and 22 °C. To check this flow rate, N2 at the same temperature and pressure are introduced to the pipeline at the rate of 2.83 m3/min. At the end of the pipe (

  • Q : Problem on Molar solution Can someone

    Can someone please help me in getting through this problem. 2.0 molar solution is acquired, when 0.5 mole solute is dissolved in: (i) 250 ml solvent (ii) 250 g solvent (iii) 250 ml solution (iv) 1000 ml solvent

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is

  • Q : What is depression in freezing point?

    Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure. The freezing point o

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Explain group 15 elements. The various

    The various elements

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Molecular basis of third law. The

    The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be