--%>

Calculation of molecular weight

Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of acetone = 195 mm Hg): (a) 25.24 (b) 35.24 (c) 45.24 (d) 55.24

   Related Questions in Chemistry

  • Q : What do you mean by the term enzymes

    What do you mean by the term enzymes? Briefly illustrate it.

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Molarity of acid solution If 20ml of

    If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is: (a) 0.1M (b) 0.2M  (c) 0.3M (d) 0.4M Choose the right answer fron above.

  • Q : Cations Chromium(III) hydroxide is

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer

  • Q : Avogadro's hypothesis Law Principle

    Avogadro's hypothesis Law Principle- Berzelius, a chemist tried

  • Q : What is protein in Chemistry Illustrate

    Illustrate what is protein in Chemistry?

  • Q : Number of moles present in water

    Provide solution of this question. How many moles of water are present in 180 of water: (a)1 mole (b)18 mole (c)10 mole (d)100 mole

  • Q : Molecular basis of third law. The

    The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be

  • Q : Liquid surfaces The surface between a

    The surface between a liquid and a vapour distinguishes these fluids. The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.<