Hybridization

Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules.

Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive at four bonds projecting from the carbon atom in procedure. We must arrive at four bonds projecting from the carbon atom in tetrahedral directions.

Lithus Pauling pointed out that the 2s and 3p orbitals of the carbon atom could be used to form new orbitals better suited to the description of the bonds. This procedure of combining orbitals to form new ones is called hybridization, and the new sets are called hybrid orbitals. The most suitable set can be found, according to Pauling, by forming wave functions which project out farthest from the central atom. When the four orbitals that they are concentrated along tetrahedral directions. Thus the sp3 hybrid orbitals are tetrahedrally oriented and are suitable for describing the bonding in CH4.

Other combinations of s, p and d orbitals can be constructed to provide orbitals suitable for molecules of other shapes, hybrid orbitals that project in linear, trigonal, tetrahedral and octahedral directions are produced by the combinations. The trigonal and linear hybrids, which leave one p and two p orbitals of the atom unchanged, are the basis for descriptions of double and triple bonds. The p orbitals form bonds and supplement the σ bonds, to notice that σ and bonds are similar to those constructed for homonuclear diatomic molecules.

Hybrid orbitals from symmetry: the hybrid orbitals constructed by Pauling led to the geometry, or symmetry, of the molecule for which they were constructed. If the geometry of the molecule is taken as known, the approximate hybrid orbitals can be deduced from symmetry consideration alone. Consider the four tetrahedrally arranged carbon atom bond orbitals needed in this approach to describe the bonding in methane. For these orbitals the characters for the various symmetry operations of the Td group can be seen by calculating the number of unchanged bond orbitals, or bond lines, for each operation. We obtain:

Td E 8C3 3C2 d 6S4
σorb 4 1 0 2 0

                    
Thus we need atomic orbitals that transform as A1 and T2 to provide the basis for the tetrahedrally directed hybrid orbitals. The totally symmetric s atomic orbital transforms according to A1. In a similar way, the hybrid combinations of table can be deduced from the symmetry of the bonding situation for which they are to be used.

Some Hybridization used in describing σ bonding:

Number of orbitals Shape Atomic-Orbital Combinations
Example
2 Linear sp CH≡CH
3 Trigonal sp2 CH2 1851_Hybridization.png CH2, BF3
4 Tetrahedral sp3 or sd3 CH4, MnO4-
  Square planner dsp2 PtCl24-, Ni(CN)24-
5 Trigonal bipyramid dsp3 PCl5, Fe (CO)5
6 Octahedron d2sp3 PtF6, CoF26-

   Related Questions in Chemistry

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Question of vapour pressure Choose the

    Choose the right answer from following. Vapour pressure of a solution is: (a) Directly proportional to the mole fraction of the solvent (b) Inversely proportional to the mole fraction of the solute (c) Inversely proportional to the mole fraction of the solvent (d

  • Q : Basic concept Give me answer of this

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Ionic radius of chloride ion The edge

    The edge length of the unit cell of Nacl crystal lattice is 552 pm. If ionic radius of sodium ion is 95. What is the ionic radius of chloride ion:(a) 190 pm  (b) 368 pm  (c) 181 pm  (d) 276 pm     <

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Dependcy of colligative properties

    Colligative properties of a solution depends upon: (a) Nature of both solvent and solute (b) The relative number of solute and solvent particles (c) Nature of solute only (d) Nature of solvent only

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Microwave Adsorption The absorption of

    The absorption of microwave radiation increases the rotational energy of molecules and gives information about the moment of inertia of the molecules.Now we can begin the study of the spectroscopy that explores the different ways in which the energy of the

  • Q : Haloalkane how haloalkane can be

    how haloalkane can be prepared by refluxing alcohol with hydrohalic acids

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

©TutorsGlobe All rights reserved 2022-2023.