--%>

Hybridization

Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules.

Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive at four bonds projecting from the carbon atom in procedure. We must arrive at four bonds projecting from the carbon atom in tetrahedral directions.

Lithus Pauling pointed out that the 2s and 3p orbitals of the carbon atom could be used to form new orbitals better suited to the description of the bonds. This procedure of combining orbitals to form new ones is called hybridization, and the new sets are called hybrid orbitals. The most suitable set can be found, according to Pauling, by forming wave functions which project out farthest from the central atom. When the four orbitals that they are concentrated along tetrahedral directions. Thus the sp3 hybrid orbitals are tetrahedrally oriented and are suitable for describing the bonding in CH4.

Other combinations of s, p and d orbitals can be constructed to provide orbitals suitable for molecules of other shapes, hybrid orbitals that project in linear, trigonal, tetrahedral and octahedral directions are produced by the combinations. The trigonal and linear hybrids, which leave one p and two p orbitals of the atom unchanged, are the basis for descriptions of double and triple bonds. The p orbitals form bonds and supplement the σ bonds, to notice that σ and bonds are similar to those constructed for homonuclear diatomic molecules.

Hybrid orbitals from symmetry: the hybrid orbitals constructed by Pauling led to the geometry, or symmetry, of the molecule for which they were constructed. If the geometry of the molecule is taken as known, the approximate hybrid orbitals can be deduced from symmetry consideration alone. Consider the four tetrahedrally arranged carbon atom bond orbitals needed in this approach to describe the bonding in methane. For these orbitals the characters for the various symmetry operations of the Td group can be seen by calculating the number of unchanged bond orbitals, or bond lines, for each operation. We obtain:

Td E 8C3 3C2 d 6S4
σorb 4 1 0 2 0

                    
Thus we need atomic orbitals that transform as A1 and T2 to provide the basis for the tetrahedrally directed hybrid orbitals. The totally symmetric s atomic orbital transforms according to A1. In a similar way, the hybrid combinations of table can be deduced from the symmetry of the bonding situation for which they are to be used.

Some Hybridization used in describing σ bonding:

Number of orbitals Shape Atomic-Orbital Combinations
Example
2 Linear sp CH≡CH
3 Trigonal sp2 CH2 1851_Hybridization.png CH2, BF3
4 Tetrahedral sp3 or sd3 CH4, MnO4-
  Square planner dsp2 PtCl24-, Ni(CN)24-
5 Trigonal bipyramid dsp3 PCl5, Fe (CO)5
6 Octahedron d2sp3 PtF6, CoF26-

   Related Questions in Chemistry

  • Q : Amines arrange in decreasing order of

    arrange in decreasing order of basicity pi pyridine,pyridine,pyrrole, morphine

  • Q : Lowering of vapour pressure Help me to

    Help me to go through this problem. Lowering of vapour pressure is highest for: (a) urea (b) 0.1 M glucose (c) 0.1M MgSo4 (d) 0.1M BaCl2

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : What are ion selective electrodes? Ion

    Ion Selective Electrodes An ion selective membrane can be used to form an electrochemical cell whose emf depends on the concentration of that ion. Before we proceed to an important application of emf measurements, brie

  • Q : Entropy on molecular basis. The

    The equation S = k in W relates entropy to W, a measure of the number of different molecular level arrangements of the system.In the preceding developments it was unnecessary to attempt to reach any "explana

  • Q : Lab question Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately 5.

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M