--%>

Hybridization

Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules.

Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive at four bonds projecting from the carbon atom in procedure. We must arrive at four bonds projecting from the carbon atom in tetrahedral directions.

Lithus Pauling pointed out that the 2s and 3p orbitals of the carbon atom could be used to form new orbitals better suited to the description of the bonds. This procedure of combining orbitals to form new ones is called hybridization, and the new sets are called hybrid orbitals. The most suitable set can be found, according to Pauling, by forming wave functions which project out farthest from the central atom. When the four orbitals that they are concentrated along tetrahedral directions. Thus the sp3 hybrid orbitals are tetrahedrally oriented and are suitable for describing the bonding in CH4.

Other combinations of s, p and d orbitals can be constructed to provide orbitals suitable for molecules of other shapes, hybrid orbitals that project in linear, trigonal, tetrahedral and octahedral directions are produced by the combinations. The trigonal and linear hybrids, which leave one p and two p orbitals of the atom unchanged, are the basis for descriptions of double and triple bonds. The p orbitals form bonds and supplement the σ bonds, to notice that σ and bonds are similar to those constructed for homonuclear diatomic molecules.

Hybrid orbitals from symmetry: the hybrid orbitals constructed by Pauling led to the geometry, or symmetry, of the molecule for which they were constructed. If the geometry of the molecule is taken as known, the approximate hybrid orbitals can be deduced from symmetry consideration alone. Consider the four tetrahedrally arranged carbon atom bond orbitals needed in this approach to describe the bonding in methane. For these orbitals the characters for the various symmetry operations of the Td group can be seen by calculating the number of unchanged bond orbitals, or bond lines, for each operation. We obtain:

Td E 8C3 3C2 d 6S4
σorb 4 1 0 2 0

                    
Thus we need atomic orbitals that transform as A1 and T2 to provide the basis for the tetrahedrally directed hybrid orbitals. The totally symmetric s atomic orbital transforms according to A1. In a similar way, the hybrid combinations of table can be deduced from the symmetry of the bonding situation for which they are to be used.

Some Hybridization used in describing σ bonding:

Number of orbitals Shape Atomic-Orbital Combinations
Example
2 Linear sp CH≡CH
3 Trigonal sp2 CH2 1851_Hybridization.png CH2, BF3
4 Tetrahedral sp3 or sd3 CH4, MnO4-
  Square planner dsp2 PtCl24-, Ni(CN)24-
5 Trigonal bipyramid dsp3 PCl5, Fe (CO)5
6 Octahedron d2sp3 PtF6, CoF26-

   Related Questions in Chemistry

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Organic and inorganic substances living

    living beings are made up of organic and inorganic substances.according to their complexity of their molecules how can ach of these substances be classified?

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Reaction of calcium carbonate Give me

    Give me answer of this question. What is the volume of 0.1NHcl required to react completely with 1.0g of pure calcium carbonate : (Ca= 40, C= 12 and o = 16 ) (a)150cm3 (b)250cm3 (c)200cm3 (d)100cm3

    Q : Benzoic acid is weaker than paranitro

    Briefly state that Benzoic acid is weaker than paranitro benzoic acid?

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Molar mass of solute The boiling point

    The boiling point of benzene is 353.23 K. If 1.80 gm of a non-volatile solute was dissolved in 90 gm of benzene, the boiling point is increased to 354.11 K. Then the molar mass of the solute is: (a) 5.8g mol-1  (b)

  • Q : Molecular energies and speeds The

    The average translational kinetic energies and speeds of the molecules of a gas can be calculated.The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the