--%>

Liquid Vapour Free Energies

The free energy of a component of a liquid solution is equal to its free energy in the equilibrium vapour.

Partial molal free energies let us deal with the free energy of the components of a solution. We use these free energies, or simpler concentration terms to which they correspond, when we deal with a variety of solution equilibrium matters. Here we begin by seeing how the partial molal free energy of a component of a liquid solution can be deduced.

We cannot count on the assuming of ideal behavior when we deal with liquid solutions. The components interact with one another and generally produce free energy effects characteristic of the particular system. Thus, liquid mixtures contrast with gas mixtures for which the ideal solution results are often satisfactory. The strategy in dealing with liquid systems is to relate the free energies of the components to those of the more easily treated equilibrium vapour.

Consider a binary system that can consist of a liquid, a vapour, or a liquid and vapour in equilibrium with one another. In view of the relation illustrated the free energy of the entire system, with superscript l for liquid and v for vapour, can be expressed as:

G = nlA GvA + nlB GlB + nA + nB GvA

For this binary system 

nlA = nvA = nA    and     nlB + nvB = nB

Or

nlA = nA - nvA    and    nlB = nB - nvB

For equilibrium between the liquid and vapour, the free energy will be a minimum with respect to the fraction, or amount of the components in the vapour phase. We can form d/GdnnA and dG/dnvB and set these derivatives equal to zero to obtain

GlA = GvA    and    GlB = GvB

The partial molal free energy of a component in a liquid solution is equal to its partial molal free energy in the equilibrium vapour. This result can be used to relate the partial molal free energies of components in liquid solutions to be partial molal free energies of the components in the equilibrium vapour.

Example: the vapor pressure of benzene and toluene over benzene toluene solutions are shown as plotted points. What do these vapor pressures tell us about the benzene-toluene solutions?

Solution: the vapor pressures of the components are very nearly proportional to the mole fractions of the components. With the subscript B for benzene and T for toluene, this behavior can be described by the equations:

PB = xBB and PT = xTT

Or, PB/P°A = xand PT/P°T = x
T

When these relations are used, we obtain:

GlB = G°B + RT In xB and GlT = G°T + RT In xT

This is the component free-energy behavior that, according to characterizes ideal behavior.

Also the volume of a benzene-toluene solution is very nearly equal to the sum of the volumes of the separate components, and no appreciable enthalpy change accompanies the mixing process. Liquid benzene-toluene solutions confirm closely to ideal-solution behavior. 

   Related Questions in Chemistry

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre (d) Concentratio

  • Q : Cations Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Problem on volumetric flow rate Methane

    Methane containing 4 mol% N2 is flowing through a pipeline at 105.1 kpa and 22 °C. To check this flow rate, N2 at the same temperature and pressure are introduced to the pipeline at the rate of 2.83 m3/min. At the end of the pipe (

  • Q : Number of moles of potassium chloride

    Choose the right answer from following. The number of moles of KCL in 1000ml of 3 molar solution is: (a)1 (b)2 (c)3 (d)1.5

  • Q : Describe Thermodynamics Properties The

    The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixe

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Problem on Neutralization What weight

    What weight of hydrated oxalic acid should be added for complete neutralisation of 100 ml of 0.2N - NaOH solution? (a) 0.45 g  (b)0.90 g  (c) 1.08 g  (d) 1.26 g      Answer

  • Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.