Transmission lines:
The transmission line is system of material boundaries that forms continuous path which can direct transmission of electromagnetic energy from power station to other stations or for transmitting energy from one point to another. Transmission line is uniform if there is no change in cross sectional geometry. Wavelengths on transmission line are compatible with size at gigahertz frequencies and capacitances and inductances are very small.
Change in potential difference per unit length i.e.
ΔV/ΔL = -LdI/dt = -j(wL + R)I
Or in limit of ΔL becoming dl
dV/dl = -(jwL + R)I
Where L is self inductance because of magnetic field around conductor V and R, is resistance of conductor. Change in current flowing in line is provided by:
dI/Dl = cdV/dt - (jwc + G)V
Where C is capacitance per unit length (formed due to finite distance between conductors of line) and G is conductance per unit length (whose existence is because of dielectric losses of dielectric medium in between conductors). If we suppose that conductors have zero resistance and that they are divided by perfect insulator (in which case transmission line becomes lossless), equations which are basic equations of transmission line becomes,
dV/dl = -LdI/dt
dI/dl = -CdV/dt
Differentiating equations with l and t respectively we have
d2V/dl2 = -L(d2I/dldt)
d2I/dtdx = -Cd2V/dt2
(1/LC)(d2V/dl2) = d2V/dt2
(1/LC)(d2I/dl2) = d2I/dt2
Equations are familiar wave equations of voltage and current respectively mean that both voltage and current propagate as waves along transmission lines. Velocity of propagation is V = 1/√LC. It can be illustrated that characteristic impedance of the transmission line z0 = √LC.
Parallel wire and coaxial cable transmission line:
Two major examples of transmission lines are (i) parallel wire and (ii) coaxial cable.
To get propagation velocity, V and characteristics impedance of any transmission line inductance per unit length, L and capacitance per unit length should be determined.
a) Parallel wire transmission lines: Recall that electric field E of conductor is given by Gauss law for electric as,
E = λ/(πrε0εr = q/(2πrε0εrl))
λ(linear charge density) = q/l, for conductor in the medium of relative permittivity (dielectric constant), εr. For two wires, each of radius x and separated by distance y.
E = E1 + E2 = q/2πrε0εrl + q/2πrε0εrl = q/πrε0εrl
Capacitance of pair is obtained from
C = q/V = q/x∫2yEdr = [q/(q/(πε0εrlx∫2y(dr/k)))]
Giving
C/l = πε0εr/ln(2y/x) i.e. capacitance per unit length. Inductance per unit length is attained as follows: magnetic flux of two conductors (whose shape are approximately cylindrical),
ΦB = 2lx∫2y-xμ0μrIdr/2πr ≈ [μ0μrIln(2y/x)/π]
But self inductance, L = ΦB/i = [μ0μrIln(2y/x)/π]
Therefore velocity of propagation, V = 1/√LC = 1/√ε0εrμ0μr as expected. Characteristics impedance,
z0 = √L/C = (μ0μr/π2ε0εr)1/2ln(2y/x)
b) Coaxial cable transmission line: the capacitance for coaxial cable is obtained following procedure utilized for the parallel wire except that ∫Edr is from a to x and b to y, a being radius of central conductor and b, distance between centres of both conductors. Capacitance per unit length is therefore
C/l = 2πε0εr/ln(y/x)
Inductance of coaxial cable is attained as follows: flux of magnetic field, ΦB, through closed circuit formed by joining conductors at the end of section of cable of length, l, is lx∫y(μ0μrI/2πr)dr = (μ0μr/2π)Illn(y/x)
Self inductance, L = ΦB/I = L = (μ0μr/2π)ln(y/x)
Velocity of propagation, V = 1/√LC
Substituting V = 1/√ε0εrμ0μr, and characteristics impedance,
z0 = √L/C(μ0μr/4π2ε0εr)1/2 lny/x
Equivalent circuit:
In Figure 1 above is illustrated two infinitely long lines carrying equal and opposite current. Part between point X and Y is subsection which comprises of impedance z =R+ jωL and admittance y= G+ jωC. Resistance, R and inductance, L are due to length and diameter of conductors while capacitance exists by virtue of close separation of conductors. Conductors being separated by the imperfect insulator or dielectric necessitate leakage of current. This signifies shunt conductance that together with shunt capacitance provides admittance. 2 conductors can therefore be represented in which case resistance, R and conductance, G are negligible. Each subsection is the equivalent circuit and infinitely loss line is considered as cascade of infinite number of such circuits.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Theories of Structure and Bonding tutorial all along with the key concepts of Valence bond theory, Crystal field theory, Octahedral field, Spectrochemical series, Factors affecting crystal field splitting
Theory and lecture notes of Chi-square test for independence all along with the key concepts of chi-square test for independence, homework help, assignment help. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Chi-square test for independence.
enthalpies of reactions tutorial all along with the key concepts of adiabatic expansion, irreversible adiabatic expansion, joule-thomson effect, kirchhoff's equation, bond enthalpies and estimation of enthalpies of formation
tutorsglobe.com early theories of wages assignment help-homework help by online wages tutors
Infrared Spectroscopy tutorial all along with the key concepts of Types of Vibrations, Correlation of structure and frequency, IR Spectroscopy Experimental Procedure, Measuring IR absorption bands, Beer's law, Determination of Concentration of Cyclohexane Using IR Spectroscopy
tutorsglobe.com photoperiodism assignment help-homework help by online plant physiology tutors
For Statement-Assignment help, homework help including the key concepts of Functions and Comments.
Terrestrial Magnetism tutorial all along with the key concepts of Magnetic Field of the Earth, Determination of Declination, Determination of Dip, Deflection Magnetometer and Magnetic Maps
keynes theory of income and employment & factors influencing the level of investment, www.tutorsglobe.com offers keynes theory assignment help - keynes theory homework help by economics tutor's help.
tutorsglobe.com locks assignment help-homework help by online operating system tutors
www.tutorsglobe.com offers system level project planning homework help, system level project planning assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
tutorsglobe.com taxonomy of chlamydia assignment help-homework help by online chlamydia tutors
Theory and lecture notes of Introduction to the chi-square distribution all along with the key concepts of chi-square distribution, Goodness-of-fit Test, Properties of the Chi-Square and Chi-Square Probabilities. Tutorsglobe offers homework help, assignment help and tutor’s assistance on chi-square distribution.
tutorsglobe.com corm assignment help-homework help by online propagation by underground stem tutors
musaceae involves approximately 6 genera and about 150 species. the members of musaceae family are extensively distributed over tropical regions of the world.
1953129
Questions Asked
3689
Tutors
1459941
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!