Relativistic Work and Energy:
Work is said to be done on the object when the forces displaces it in its (force's) direction. Consider the element of work dW done on particle when the force F→ moves it through element of displacement ds→. We can write this as:
dW = F→.ds→ = Fds
In relativistic range, force is given as:
F = d/dt(m0v/√(1 - v2/c2)
Using product rule you can write this as:
F = m0/(√1 - v2/c2)dv/dt + vd/dt(m0/(√1 - v2/c2))
= (m0(1 - v2/c2)3/2)dv/dt
Putting this result in work equation, we get
W = 0∫sFds =0∫s(m0/(1 - v2/c2)3/2)(dv/dt)ds
Now after applying chain rule we get
W =0∫v(m0v/(1 - v2/c2)3/2)dv
Integrating by parts, we have
W = [m0c2/√(1 - v2/c2)] - m0c2
W = mc2 - m0c2
This equation is equation of relativistic work. It tells us that we can't accelerate an object to speeds up to or greater than speed of light. If v→c, then m→∞. Amount of work required to get this status becomes infinite and impossible to furnish.
If, we ignore dissipative (frictional) forces and suppose constant potential energy for body, then work-energy theorem (form conservation of energy principle) tells us that work done on body seems as its kinetic energy. Therefore, if we write T for kinetic energy, we get
T = mc2 = m0c2
As always, you must demand that equation be consistent with definition of kinetic energy as we all know it at ordinary velocities. Therefore, in limit as v/c << 1, we can use series expansion formula
1/√1 -x = 1 + 1/2x + 3/8x2 +....
Here x = v2/c2. Relativistic mass formula could then be approximated as
m = mo/√(√(1 - v2/c2) ≈ m0[1 + 1/2(v/c)2] = m0 + 1/2m0(v/c)2
On solving this approximate value we get
T = [m0 + 1/2m0(v/c)2]c2 - m0c2[1 + 1/2(v/c)2 - 1] = 1/2m0v2 for v/c<<1
Thus, equation correctly represents kinetic energy at all velocities.
Mass-Energy Equivalence:
T = mc2 - m0c2 = [m0c2/√(1 - v2/c2)] - m0c2
We easily observe that kinetic energy T is function of velocity. Also, as T is energy, other two terms on right hand side of equation are also energy terms and we can write:
T(v) = E(v) - E(0)
or E(v) = T(v) + E(0)
Where E(v) = m0c2/√(1 - v2/c2) = mc2 and E(0) = m0c2 which value of E(v) for v = 0
E(v) is total energy of particle moving at relativistic speed v, E(0) is energy of particle when it is at rest i.e. v = 0. Further more if we consider each term individually, we write:
E(0) = m0c2
E(v) = mc2
These are famous Einstein's mass-energy equations. It is clear from the equations that mass and energy are related by factor c2 and are equivalent. It means that principle of conservation of mass or energy no longer makes sense as conservation of mass-energy does.
E(v) - E(0) = mc2 - m0c2 or ΔE = Δmc2 where Δm = m - m0
This equation defines that change in energy leads to corresponding change in mass. More usually, it says that when mass is destroyed, it seems as energy and also if energy disappears, it emerges as mass.
If particle has potential energy V, we could write more general equation of form
mc2 = T + V + m0c2
Now, we use that fact that E = mc2, E0 = m0c2 and p = mv
E2 = (pc)2 + E02
This Equation is relationship between momentum and energy of the particle. It describes why, in relativistic theory, we should replace conservation of total energy. We can then state that, as viewed from the specified frame of reference, total relativistic energy of isolated system remains constant.
Transformation of Momentum and Energy:
Consider two observers o and o' in inertial frames of reference S and S' which are in relative motion along -axis at a relativistic velocity. For observer, components of momentum and relativistic energy of particle of rest m0 with velocity V along positive -axis are
px = m0v/(√1 - V2/c2)
Py = 0
Pz = 0
and E = m0c2/(√1 - v2/c2)]
Observer O' assigns to this particle components of momentum and relativistic energy as
P'x = m0V'/(√1 - v'2/c2)
P'y = 0
P'z = 0 and E' = m0c2/√(1 - V'2/c2)
Where V' is velocity of particle along positive -axis as measured by this observer. Notice that O' assigns to particle same rest mass m0.
We have to find primed quantities in terms of unprimed ones. First of all transform velocity terms. That is, calculate quantities
V'/√1 - V'2/C2 and c2/√(1 - V'2/C2) in terms of V using velocity transformation equation,
i.e.
V' = (V - v)/ (1 - (v/c2)V)
1 - V'2/c2 = (1 - 2v2/c2 + V2v2/c4)/(1 - 2Vv/c2 + V2v2/c4)
Get relativistic energy equation as assigned by observer O'. We get:
m0c2/√(1 - V'2/C2) = (m0c2 - m0Vv)/(√1 - v2/c2)(√1 - V2/c2)
E' = E - vPx/√(1 - v2/c2)
Also, momentum assigned by O' is
P'x = (Px - vE/c2)/√(1 - v2/c2)
Momentum in directions that are perpendicular to direction of motion is not changed. With this in mind, we collect transformation equations for relativistic energy and components of momentum together to get set given below:
P'y = Py
P'z = Pz
E' = (E - vPx)/(√(1 - v2/c2)
Relativistic energy and momentum equations obtained are of same form as Lorentz transformation equations. Therefore, we conclude that momentum and energy transform exactly as space-time quantities x, y, z and t.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com saving function assignment help-homework help by online consumption function tutors
insulation tester (megger) applies dc (direct current) voltage to the insulation system and calculates the current that results.
tutorsglobe.com contagious diseases assignment help-homework help by online dairy tutors
to learn the two inputs of the arithmetic circuits of half adder, full adder and flip flops using ics.
tutorsglobe.com nitrogen and phosphorus assignment help-homework help by online physiological role and deficiency symptoms tutors
Infrared radiation is abbreviated as IR radiation is electromagnetic radiation with a wavelength among 0.7 and 300 micrometers, that equates to a frequency range among about 1 and 430 THz.
theory and lecture notes of bioelectric signals and electrocardiogram all along with the key concepts of cell membrane potential, action potential, cardiovascular system, electro-stimulation of heart and electrodes. tutorsglobe offers homework help, assignment help and tutor’s assistance on bioelectric signals and electrocardiogram.
tutorsglobe.com structure of maize grain assignment help-homework help by online seed tutors
need a reliable biotechnology engineering assignment help service? get assistance from qualified tutors to score better grades.
nineteenth century art assignment help - quality, precision, and personalized academic help to ace your marks in scorecard!
thermistor digitals usually comprise “built in” sensors and probes. they have to be calibrated throughout the manufacturing process and thus are not interchangeable.
Presentation of VLF Results tutorial all along with the key concepts of Filtering, Displaying VLF data, VLF/EM comparisons, Natural and controlled-source audio-magnetotellurics, CSAMT practicalities
tutorsglobe.com t wave assignment help-homework help by online ecg-electrocardiogram tutors
tutorsglobe.com algorithm and problem solving, defining the problem, problem solving strategies, divide and conquer strategy, dynamic programming, breaking the problem into sub problems and data structure, looping and iterations.
Genes are ordered linearly in a chromosome. The point in a chromosome at which the gene is positioned is termed as locus.
1952210
Questions Asked
3689
Tutors
1441170
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!