Introduction to the Postulates of Quantum Mechanics:
We have assessed the mathematics (that is, complex linear algebra) essential to understand the quantum mechanics. We will now observe how the physics of quantum mechanics fits into this mathematical frame-work.
A postulate is a somewhat which is supposed to be self-evident, requiring no proof, employed as a basis for the reasoning. The postulates of Quantum Mechanics are the minimum conditions which should be satisfied for Quantum Mechanics to hold. Whenever Quantum mechanics works based on such postulates, it signifies that the postulates are true.
I) Physical meaning of the Wave-function:
Postulate 1: The wave-function tries to explain a quantum mechanical entity (that is, photon, electron, x-ray and so on) via its spatial location and time dependence, that is, the wave-function is in the most general sense based on time and space:
Ψ = Ψ(x,t)
The state of a quantum mechanical system is fully specified through the wave-function Ψ(x,t).
The Probability that a particle will be found out at time to in a spatial interval of width dx centered around xo is found out by the wave-function as:
P (xo,to) dx = Ψ*( xo,to)Ψ(xo,to)dx = |Ψ(xo,to)|2dx
Note: Dissimilar for a classical wave, by well-defined amplitude, the Ψ(x,t) amplitude is not ascribed a meaning.
In order for Ψ(x,t) to symbolize a viable physical state, some of the conditions are needed:
a) The wave-function should be a single-valued function of the spatial coordinates. (That is, single probability for being in the given spatial interval)
b) The first derivative of the wave-function should be continuous in such a way that the second derivative exists in order to satisfy the Schrodinger equation.
c) The wave-function can't encompass infinite amplitude over a finite interval. This would prevent normalization over the interval.
II) Experimental Observables Correspond to Quantum Mechanical Operators
Postulate 2: For each and every measurable property of the system in classical mechanics like position, momentum and energy, there exists a corresponding operator in the quantum mechanics. The experiment in the lab to compute a value for such an observable is simulated in theory via operating the wave-function of the system by the corresponding operator.
Note: Quantum mechanical operators are classified as the Hermitian operators as they are analogs of Hermitian matrices which are stated as having only real Eigen-values. As well, the Eigen functions of the Hermitian operators are orthogonal.
Table: (Engel and Reid): list of classical observables and quantum mechanics operator.
Note: The operators act on a wave-function from the left, and the order of operations is significant (that is, much as in the case of multiplying by matrices-commutativity is significant).
III. Individual Measurements:
Postulate 3: For a single measurement of the observable corresponding to a quantum mechanical operator, only values which Eigen-values are of the operator will be measured.
Whenever measuring energy: one gets Eigen-values of the time-independent Schrodinger equation:
H ˆ Ψn(x,t) = En Ψn(x,t)
Note: The net wave-function stating a given state of a particle requires not is an Eigen-function of the operator (however one can expand the wave-function in terms of the Eigen-functions of the operator as a complete basis).
IV) Expectation Values and Collapse of the Wave-function:
Postulate 4: The average or expectation, value of the observable corresponding to a quantum mechanical operator is represented by:
This is the most common form for the expectation value expression. If the wave-function is normalized, then the denominator is identically 1 (this is supposed to be the case since each and every valid wave-function should be normalized).
V) Time Evolution:
Postulate 5: The time-dependent Schrodinger equation regulates the time evolution of a quantum mechanical system:
Note: The Hamiltonian operator Hˆ comprises the kinetic and potential operators. This equation reflects the deterministic (Newtonian) nature of the particles or waves. It comes out to be in contrast to Postulate 4 (that is, most of the observations lead to the different measured observables, each weighted differently, that is, a probabilistic view of the particle or wave). The reconciliation is in the fact that Postulate 4 relates to the outcomes of measurements at a particular instant in time. Postulate 5 let us to propagate the wave-function in time (that is, we propagate a probabilistic entity). Then, at certain future time, if we make the other measurement, we are again faced by the implications of Postulate 4.
The Correspondence Principle:
The correspondence principle defines that as the quantum number 'n' becomes big, quantum mechanics must approximate the classical mechanics. For a new theory to be acceptable, it should conform to the well-tested existing theories. In this vein, the special theory of relativity, that is significant only if the velocities comprised are large, should conform to Newtonian mechanics if the velocities comprised are small day to day values. As an illustration of this law, we consider the Hydrogen atom as treated by the Bohr. The frequency of the radiation emitted or absorbed in the transition between states n and n' is,
Enn' = RE [(1/n'2) - (1/n2)]
Here 'RE' is the Rydberg energy.
Now, classical mechanics forecasts a continuous spectrum, while Bohr's theory gives mount to discrete lines. Let us take n' as being equivalent to n + 1, then
Enn' = RE [1/(n+1)2 - 1/n2] = RE [(n+1)-2 - n-2]
On applying the Binomial expansion:
RE [(n+1)-2 - n-2] = RE [n-2 - 2n-3 + (2)(3)n-4 - .... -n-2]
Hence,
Enn' ≈ - 2/n3 RE
This tends to zero as 'n' tends to infinity. We conclude thus, that as 'n' tends to infinity; the spectrum becomes continuous, as predicted through the classical mechanics.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com hydrogen bonding assignment help-homework help by online intermolecular forces tutors
Genes and Chromosomes tutorial all along with the key concepts of Introduction to Genes, Chromosomes, Chromosome Structure, Chromosome Number, Sex Chromosomes, Human Chromosomes and Genetic Disorders, Nucleic Acids, DNA and RNA
tutorsglobe.com keynes aggregate demand equation assignment help-homework help by online keynesian theory of income determination tutors
Synthesis of Alum from Aluminum tutorial all along with the key concepts of Theory of synthesis of alum, Experimental Procedure for the synthesis of alum, Calculate the percent yield of alum
Color Chemistry and Technology tutorial all along with the key concepts of electromagnetic radiation, compound promotes electrons, conjugated double bonds, Three rings fused together
tutorsglobe.com scope of financial management assignment help-homework help by online financial management tutors
Taxes in animals tutorial all along with the key concepts of Illustrations of Taxes in animals, Aerotaxis, Chemotaxis, Energy taxis, Phototaxis, Thermotaxis, Geotaxis, Rheotaxis and Magnetotaxis
Super Class-Crustacea tutorial all along with the key concepts of Characteristics of Super Class - Crustacea, Primitive Appendages, Classes of Crustaceans, Free-Swimmers, Walkers and The crab
tutorsglobe.com parasitic helminthes assignment help-homework help by online medical parasitology tutors
Phylum Mollusca-Helix tutorial all along with the key concepts of The shell, The body, Locomotion, Digestive system and Feeding, Main Digestive Gland, Gaseous exchange, Circulatory system, Excretion and Osmoregulation
Theory and lecture notes of Effects of Deficits all along with the key concepts of effects of deficits, Open-Economy Effects, Short Run Consequences, Political Consequences. Tutorsglobe offers homework help, assignment help and tutor’s assistance on effects of deficits.
tutorsglobe.com special type of inflorescence assignment help-homework help by online inflorescence tutors
www.tutorsglobe.com offer nuclear chemistry homework help, nuclear chemistry assignment help, nuclear chemistry solutions, online tutoring and instant answers for nuclear chemistry problems by online chemistry tutors.
Vertebrate chordates tutorial all along with the key concepts of Characteristics of Subphylum Vertebrata, Features of Superclass Agnatha, Characteristics of the Class Cyclostomata, Features of Class Ostracodermi and Gnathostomata
tutorsglobe.com zinc and molybdenum assignment help-homework help by online physiological role and deficiency symptoms tutors
1941919
Questions Asked
3689
Tutors
1466508
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!