Inverter Design:
Figure: Bipolar Transistor Inverter Circuit
Usually select IC mid range for a high value of βF.Let consider a supply of = 5V.A usual mid-range value of IC would be 3 to 5 mA.For IC = 5mA, Rc = VCC/ICMAX =1 KΩA usual βF = 50 for an integrated transistor.When we employ a base overdrive factor of σu = 5. Then,σu = βFRC/RB => 5 = (50 x 1 KΩ)/RB => RB = (50 KΩ)/5 = 10 KΩThe idea is just to ensure that RB gives sufficient current to overdrive the transistor. Rewriting the relationship, the selection is really:RB = (βF/σu) RcOperation and Output Characteristic:
Figure: Collector Current as the function of Base-Emitter Bias
The collector current which flows via the transistor depends on the bias applied to the base emitter junction according to normal exponential law for the p-n junction.Generally,VBE cut - in = 0.6V
VBE on = 0.7V
VBE sat = 0.8VReferring to the output characteristic of figure shown below that shows an operating load line, the below can be seen. At very low input voltages, VBE is small and no current flows in the collector of transistor, apart from certain small leakage current. Therefore, the output voltage is at Vo = VCE = VCC. If the input voltage to inverter is slowly raised, ultimately the base-emitter junction reaches the point of cut-in if Vi = VBE CUT-IN at point A on the characteristic as shown in figure below. Here, IC ≈ 0 and hence Vo = VCE = VCC still. Since the input voltage is further raised, base current begins to flow and the transistor enters the forward active mode where IC = βF IB and the operating point travels upward all along the load line. Ultimately, the point B is reached where IB = ICMAX/ βF and the transistor arrives at the edge of saturation. In this condition, the collector current reaches its maximum value and the output voltage drops to its minimum of Vo = VCESAT ≈ 0.1 – 0.2 V. Further raise in the input voltage overdrives the transistor deeper into saturation however has little effect on collector current or output voltage.
Figure: Output IC vs. VCE Characteristic for Single Transistor Inverter
Transfer Characteristic:The transfer characteristic of a logic gate is just a plot of steady-state output voltage vs. input voltage over its range of operation such as that shown in figure below. Initially if Vi = 0, then T is OFF and hence IC = 0 and VO = VCC. As Vi is slowly raised, a point is ultimately reached at A, where the transistor starts to turn ON. This is termed to as the cut-in point for the transistor or the “edge of conduction”. Since Vi is further raised, the transistor becomes fully conducting and enters the forward active mode among the points A and B on the characteristic. As the collector current rises, the output voltage drops from VCC towards ground till the transistor reaches the edge of saturation at point B. The slope of characteristic among points A and B is basically determined by the gain of circuit. Finally, as the transistor is driven fine into saturation, the output voltage levels off at Vo = VCESAT. Critical points on the characteristic are points A and B as these are points that define the transition region in the output between the high and low logic level. They as well define the boundaries of operation between, Cut-off, Forward Active and Saturation modes of operation of the transistor.Logic Voltages:Output Levels: From the transfer characteristic for single transistor inverter, it can be seen that the output HI and LO logic voltages are fine defined.VOL = VCESAT; VOH = VCCInput Levels: The input logic voltages are not as evidently defined and can occupy ranges where the output remains at the accurate logic level. The critical points, A and B, on the characteristic can be employed as critical points to define the limiting values for such ranges.Point A defines the input voltage that just starts to turn on the transistor and is, therefore, the maximum input LO voltage.
Therefore:ViLMAX = VBE CUT-IN; Usually 0.6 VPoint B defines the minimum input voltage that will just keep the transistor at the edge of saturation region and therefore as well at the edge of linear forward active region. At this point:Vi = ViHMINICMAX = βF IB(VCC – VCESAT)/RC = βF (ViHMIN - VBESAT)/RB[(VCC – VCESAT) RB]/ βF RC = ViHMIN - VBESATViHMIN = VBESAT + (RB/ βF RC) (VCC – VCESAT) = VBESAT + (1/σu) (VCC – VCESAT)For component values which are established above:ViHMIN = 0.8 + (1/5) (5 – 0.2) = 0.8 + 0.2 x 4.8 = 0.8 + 0.96 = 1.76 V
Figure: Transfer Characteristic of Bipolar Transistor Inverter
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
www.tutorsglobe.com offers transition element homework help, transition element assignment help, online tutoring assistance, inorganic chemistry solutions by online qualified tutor's help.
the annealed copper conductors generally in round shape are employed for winding small and medium capacity electrical machines.
Theory and lecture notes of Locking and system recovery all along with the key concepts of locking and system recovery, Transaction back-up, lock management. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Locking and system recovery.
tutorsglobe.com microbes in fermentation assignment help-homework help by online anton van leeuwenhoek microscopes tutors
tutorsglobe.com criticism of marginal theory assignment help-homework help by online marginal productivity theory of distribution tutors
Secure top-notch marks by availing our finest Environmental Physics Assignment Help service at your doorstep!
tutorsglobe.com indehiscent dry fruits assignment help-homework help by online simple dry fruits tutors
Importance of Soil and Plant Tissue Analysis tutorial all along with the key concepts of Plant Tissue Analysis - Nutrient Concentration, Plant-Stalk Nitrate, Application of Plant Analysis, Application of Soil Analysis, Plant, Soil and Water Relationship, Soil Depth and Layering
Respiration in Animals tutorial all along with the key concepts of Respiratory systems and structures, features of Diffusion and Respiratory Structures, Cutaneous Respiration, Gaseous Exchange in Mammals
Looking for top-rated Microprocessor Assignment Help service at budget-friendly prices? Hire qualified tutors and secure top-notch grades easily.
iupac prefixes-suffixes for various compounds tutorial all along with the key concepts of alkenes, alkynes, alkyl halides, alcohols, ethers, aldehydes, ketones, acid amides, acid anhydrides, ethers, amines
tutorsglobe.com html assignment help-homework help by online computer programming tutors
Probability tutorial all along with the key concepts of General Principles of probability, First Law of Probability, Genetic Considerations and Second Law of Probability
elastic properties of solids tutorial all along with the key concepts of concept of elasticity, statement of hooke's law, verification of hooke's law, young's modulus of elasticity and elastic potential energy
Types and Effects of Linkages on Nature of Polymers tutorial all along with the key concepts of Types of linkages in the polymer, Cross-linkings, Bakelite is a commercially important polymer, Implications of cross-linking in polymers, More properties of polymers
1939729
Questions Asked
3689
Tutors
1450078
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!