Introduction:
Through the previous chapter we had concerned our experiments to the techniques of direct titration. That is, wherever a standard solution directly reacts by the substance being determined. In this chapter, we shall give only one experiment, to reveal another of the techniques that is popularly referred to as Back - titration. This is gained whenever in an acid - base reaction, the amount of base added to a certain amount of the acid is in excess of the stoichmetric amount of the acid needed leaving the base in excess and the resulting solution basic.(If it is the acid that is excess, the remaining solution will be acidic).
The amount of base in excess can now be determined via titrating the excess basic solution against another standard acid solution different from the initial acid that reacted through the base.
Experiment:
Acid - base titrations. Determination of the concentration of a substance that is in excess after a chemical reaction (back titration).
Requirements:
Chemicals
Apparatus
Quantity
Sample A is a solid anhydrous
sodium carbonate
Sample B is a standardisation
solution of HCl containing 0.303 1 litre mole/dm3
Sample C is a standardized solution of NaOH containing 0.131 mole/ dm3
Phenolphthalein indicator
As listed in experiment 2
1 litre standard flask
Tripod stand
Bunsen
burner
1 No
Procedure:
1. 1000cm3 of solution B was put into a one litre (dm3) standard flask.
2. Pour into the solution, all of the Na2CO3 sample.
3. Mix methodically. Warm gently if necessary. We might notice slight bubble. Allow to cool if warming was executed.
4. Rinse a burette twice with a few cm3 of solution C and next fill it through similar solution above the zero mark and drain to the mark making sure the burette tip is full.
5. Using a pipette, transfer 25cm3 of the solution B into a 250cm3 conical flask. Add 2 to 3 drops. Situate the conical flask onto a white sheet of paper or tile.
6. Run solution C into solution B in the conical flask whilst swirling the flask to ensure adequate mixing of the content until a permanent pink coloration is examined.
7. Recur the titration using fresh portions of solution B until at least two titration values are within the accuracy of 0.2cm3 of the titrant.
8. Find the average of our titre values.
Problem:
From our average titre value, determine
a) The concentration in moles per dm3 of solution C that has reacted through solution B
b) The mass of solid sample A in grams that was dissolved in solution B (Na = 23, 0= 16, H =1)
Results:
Burette reading
1st Reading
2nd Reading
3rd Reading
Final reading
Initial reading
Volume of solution of C
Average titre reading, = + +/3 = 22.50cm3 (assuming)
Treatment of results:
In solving this problem, we must understand that whenever sample A, was added to solution B, HCl.
The reaction is represented via
2HCl+ Na2CO3 → 2NaCl + H2CO3 (H2O + CO2)
Afterward when solution C containing NaOH was now titrated against solution B, the reaction must have been through the excess amount of the HO for example: Back titration. The reaction can be symbolized via
HCl + NaOH → NaCl + H2O
Since there was no evidence of the 1st reaction, it is only the 2nd reaction that can be utilized to determine the amount of the first reactant. We might wish to note as well that, the average titre value that will be utilized in solving this problem might not coincide through the titre value we gained in the laboratory. This is just a demonstration. We shall begin from the titre value
The amount in moles of NaOH
= Molar concentration x Volume
= 0.131 moldm3 χ / 1000
= 0.000131 χ mol of NaOH
(Where, χ is the average titre value obtained from the experiment)
From the stoichiometric equation. χ
1 mole NaOH = 1 mole HCl
0.000131 χ moles NaOH =0.000131 χ moles HCl
That is, 25cm3 of HCl contained 0.000131 χ moles HCl
1000cm3 of HCl will contain 0.0001231 x 1000 x χ moldm-3 / 25
= 0.000524 χ moldm-3
This is the molar concentration of HCl that was in excess and that reacted through the NaOH solution. From the data provided, the original molar concentration of the HCl acid was 0.303 mole dm3 Out of this, 0.00524 χ reacted as excess with NaOH
= The molar amount of HCl that must have reacted with the solid Na2CO3 sample
= 0.303 - 0.00524 χ mol dm-3 = γ mol/ dm3
To find the amount in moles, the original molar concentration of HCl was 0.303 moldm-3
For example 1000 cm3 will contain 0.303 x 25 moles / 1000
= 0.0076 moles.
Out of this 0.000131 χ moles HCl reacted by the NaOH
The mole of HC1 that must have reacted with the Na2CO3
= 0.0076 - 0.000131 χ moles.
= Z moles of HCl.
From equation 1
2HCl + Na2CO3 → 2NaCl + H2O + CO2
That is 2 moles HCl= 1Z mole NaCO3
Z Mole HCl = 1/2 Z moles Na 2CO3
Amount in moles = mass/ Molar mass (Remember of a solid particle)
Molar mass of Na2CO3 = (2 x 23) + 12 + (3 x 16) = 106g mole -1
Amount in moles = 1/2 Z mole = mass / 106g mole -1
Mass of Na2CO3 added to solution B = 1/2 Z x 106
=53Zg.
I hope we have not been confused via such calculations. This is the reason why i did not use a titre value for the first time so that we can really work ourselves into the experiment. If I might add though, the following values were attained via me.
X =28.80cm3
Z = 0.0038 χ moles HCl
1/2 Z = 0.0019 moles Na2CO3
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with an expert at https://www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online chemistry tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com fatty acids assignment help-homework help by online lipid metabolism tutors
Crystals Binding tutorial all along with the key concepts of Inter atomic forces, Vander Waals bonding, Ionic bonding, Covalent bonding and Metallic bonding
tutorsglobe.com cyclic and noncyclic photophosphorylation assignment help-homework help by online plant physiology tutors
Theory and lecture notes on the concept of Frequency Response Considerations all along with the key concepts of Single Inverting Gain phase, Feedback and Stability, Two-Stage Non-Inverting Amplifier, Gain Margin and Phase Margin. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Frequency Response Considerations.
To disclose information about their several operating segments an IASB standard (IFRS 8 Operating Segments) needs listed companies.
tutorsglobe.com modified accelerated cost recovery system homework help-assignment help by online accounting basics tutors.
Theory and lecture notes of The IS Curve all along with the key concepts of IS curve, Fiscal Policy and the Position of the IS Curve, Economic Fluctuations. Tutorsglobe offers homework help, assignment help and tutor’s assistance on The IS Curve.
www.tutorsglobe.com offers redox reactions homework help, redox reactions assignment help, online tutoring assistance, physical chemistry solutions by online qualified chemistry tutor's help.
art criticism assignment help is a comprehensive resource for scholars seeking help for precisely finishing off complex tasks timely!
Some Other Techniques of Winding are Brazing, Hot stacking, Banding the armature, Cord bands, Steel bands
We, at Numerical Analysis Assignment Help deliver the top-notch and plagiarism free papers timely and ensure impeccable grades at feasible prices.
Top-rated Nonlinear Dynamics Assignment Help tutors are at your service 24/7 offering plagiarism free solutions ensuring A++ grades at low prices.
tutorsglobe.com electron transport chain assignment help-homework help by online biological oxidation tutors
Chemical Groupings of Polymers with Nomenclature tutorial all along with the key concepts of Addition polymers, Condensation polymers, Cross-linked polymers, Based on the stereochemistry
Find the most customized Buddhism Assignment Help service to resolve complex papers and to attain your desired grades.
1953217
Questions Asked
3689
Tutors
1458625
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!