--%>

Surface Tension Vapour Pressure

The vapor pressure of small liquid drops depends on the drop size.

Although the surface properties of a liquid are different from those of the bulk liquid, the special surface properties can be ignored except in a few situations. One is the case in which a liquid is dispersed into fine droplets and the surface then constitutes a large fraction of the total material. A similar situation occurs with finely divided material.

Consider the transfer of dn mol of liquid from bulk liquid to a droplet of radius r. if the normal vapor pressure of the liquid is P0 and of the droplet is P, the free energy change for this can be written, according as

dG = dn RT In P/P0

the free energy change can also be calculated from the surface energy change of the droplet that results from the surface area increase due to the addition of dn mol of the substance with molar mass M. this addition produces a volume increase of M dn/p.

The volume adds a spherical shell, whose area is 4∏r2. The increase in the radius of the droplet dr is given by the relation

M dn/p = 4∏r2 dr

Or

dr = M/4∏r2p dn

The increase in surface energy is γ times the increase in the surface area that results from the increase dr in the droplets radius; i.e.

dG = γdA = γ [4∏ (r + dr)2 - 4∏r2] = 8γ∏r dr

substitution of equation gives

dn RT In P/P_0  = 2γM/pr dn    

And In P/P_0    =  2γM/prRT    

if as is assumed here, SI units are used, care must be taken to state the density in kilograms per cubic meter instead of the often used grams per millimeter. The conversion is p(kg m-3) = 103 p(g mL-1).

Vapor pressure of water as a function of radius of curvature of surface at 25°C (P0 = 0.03167 bar and γ = 0.07197 Nm-1)

m

nm

P/P0

10-6

103

1.001

10-7

102

1.011

10-8

101

1.111

10-9

100

2.88


Equation relates the vapor pressure P of a droplet with a highly curved surface to the vapor pressure P0 of the bulk liquid. The appearance of r in the denominator implies the dependence of vapor pressure on droplet size that is illustrated in the table.

These data produce something of a dilemma when condensation of a vapor to a liquid is measured. The creation of an initial small droplet of liquid would lead to a particle with such a high vapor pressure, according to, that it would evaporate even if the pressure of the vapor were greater than the vapor pressure of the bulk liquid. Condensation can take place on dust particles or other irregularities so that the equilibrium thermodynamic result can be circumvented by some mechanism that avoids an initial slow equilibrium growth of droplets.

Similar condensations are necessary when the reverse process, the boiling of a liquid, which requires the formation of small vapor nuclei, is treated. Chemically, one also encounters this phenomenon in the difficulty with which some precipitates form and in the tendency for liquids to supercollider. Likewise, the digestion of a precipitate makes use of the high free energy of the smaller crystals for their conversion to larger particles.

   Related Questions in Chemistry

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

  • Q : Molality of a glucose solution What

    What will be the molality of a solution containing 18g of glucose (having mol. wt. = 180) dissolved in 500g of water: (i) 1m  (ii) 0.5m  (iii) 0.2m  (iv) 2m

  • Q : Question associated to vapour pressure

    Choose the right answer from following. The vapour pressure lowering caused by the addition of 100 g of sucrose(molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25degree C is 23.8 mm Hg: (a)1.25 mm Hg (b) 0.125 mm Hg (c) 1.15 mm H

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : Excel assignment I want it before 8 am

    I want it before 8 am tomorow please. I am just wondering how much is going to be ?

  • Q : Quastion of finding vapour pressure

    Vapour pressure of CCl425Degree C at is 143mm of Hg0.5gm of a non-volatile solute (mol. wt. = 65) is dissolved in 100ml CCl4 .Find the vapour pressure of the solution (Density of CCl4 = = 1.58g /cm2): (a)141.43mm (b)

  • Q : Polyhalogen compounds we need 10

    we need 10 examples for the polyhalogen compounds....please help me....need it urgently...

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Volume hydrogen peroxide Choose the

    Choose the right answer from following. The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8