--%>

Surface Tension Vapour Pressure

The vapor pressure of small liquid drops depends on the drop size.

Although the surface properties of a liquid are different from those of the bulk liquid, the special surface properties can be ignored except in a few situations. One is the case in which a liquid is dispersed into fine droplets and the surface then constitutes a large fraction of the total material. A similar situation occurs with finely divided material.

Consider the transfer of dn mol of liquid from bulk liquid to a droplet of radius r. if the normal vapor pressure of the liquid is P0 and of the droplet is P, the free energy change for this can be written, according as

dG = dn RT In P/P0

the free energy change can also be calculated from the surface energy change of the droplet that results from the surface area increase due to the addition of dn mol of the substance with molar mass M. this addition produces a volume increase of M dn/p.

The volume adds a spherical shell, whose area is 4∏r2. The increase in the radius of the droplet dr is given by the relation

M dn/p = 4∏r2 dr

Or

dr = M/4∏r2p dn

The increase in surface energy is γ times the increase in the surface area that results from the increase dr in the droplets radius; i.e.

dG = γdA = γ [4∏ (r + dr)2 - 4∏r2] = 8γ∏r dr

substitution of equation gives

dn RT In P/P_0  = 2γM/pr dn    

And In P/P_0    =  2γM/prRT    

if as is assumed here, SI units are used, care must be taken to state the density in kilograms per cubic meter instead of the often used grams per millimeter. The conversion is p(kg m-3) = 103 p(g mL-1).

Vapor pressure of water as a function of radius of curvature of surface at 25°C (P0 = 0.03167 bar and γ = 0.07197 Nm-1)

m

nm

P/P0

10-6

103

1.001

10-7

102

1.011

10-8

101

1.111

10-9

100

2.88


Equation relates the vapor pressure P of a droplet with a highly curved surface to the vapor pressure P0 of the bulk liquid. The appearance of r in the denominator implies the dependence of vapor pressure on droplet size that is illustrated in the table.

These data produce something of a dilemma when condensation of a vapor to a liquid is measured. The creation of an initial small droplet of liquid would lead to a particle with such a high vapor pressure, according to, that it would evaporate even if the pressure of the vapor were greater than the vapor pressure of the bulk liquid. Condensation can take place on dust particles or other irregularities so that the equilibrium thermodynamic result can be circumvented by some mechanism that avoids an initial slow equilibrium growth of droplets.

Similar condensations are necessary when the reverse process, the boiling of a liquid, which requires the formation of small vapor nuclei, is treated. Chemically, one also encounters this phenomenon in the difficulty with which some precipitates form and in the tendency for liquids to supercollider. Likewise, the digestion of a precipitate makes use of the high free energy of the smaller crystals for their conversion to larger particles.

   Related Questions in Chemistry

  • Q : What are halogen oxoacids? Fluorine

    Fluorine yields only one oxyacid, hypo

  • Q : Explain equilibrium and molecular

    The equilibrium constant can be treated as a particular type of molecular distribution. Consider the simplest gas-phase reaction, one in which molecules of A are converted to molecules of B. the reaction, described by the equation

    Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Vapour pressure of volatile substance

    Provide solution of this question. According to Raoult's law the relative lowering of vapour pressure of a solution of volatile substance is equal to: (a) Mole fraction of the solvent (b) Mole fraction of the solute (c) Weight percentage of a solute (d) Weight perc

  • Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r

  • Q : Mole fraction of water Give me answer

    Give me answer of this question. A solution contains 25%H2O 25%C2H5OH , and 50% CH3 COOH by mass. The mole fraction of H2O would be: (a) 0.25 (b) 2.5 (c) 0.503 (d) 5.03.

  • Q : Problem on partial pressure i) Show

    i) Show that the equilibrium constant Kp for the reaction CaCo3(s) ↔ CaO(s) +CO2(g)is about unity (i.e. = 1.0) at 895 °C.ii) If two grams of calcium carbonate are pl

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are