Explain Solid Compound Formation.

In some two component, solid liquid systems, a solid compound forms.

In systems in which the components have an interaction for such other, a solid state compound of the two compounds of the two components can form.

Formic acid and formaide form a solid state, one-to-one compound. The effect on the freezing point diagram is shown in fig. 1, such diagrams are understandable on the basis of the discussion of the diagrammatic problems. Each half of the fig. corresponds to the simple eutectic diagrams treated there.

Solutions which on cooling reach line NM or RW of fig. give rise to solid formaide, respectively. Solutions which on cooling reach line PN or PQ give rise to a solid which is a compound containing equimolar amounts of formic acid, and at point N the solution is in equilibrium with the new compound and formaide. Points and Q represent two eutectics that generally have different temperatures.

Again, as in the preceding section, the initial slopes of the lines at M, P and R can be interpreted in terms of the enthalpy of fusion and the freezing point of the substance that separates out as a solid near these points. Likewise, the curves can be interpreted in terms of the solubility of these components and can be compared with the ideal solution expectations given by the above equation.

Compound formation in the solid state is frequently encountered with hydrates, the formation of hydrated compounds of sulphuric acid in the solid state. Again, such diagrams are easily understood as a series of simple eutectic diagrams side by side.

A complication does occur when a solid compound does not have sufficient stability to persist up to the temperature at which it would melt. In such cases the unstable solid breaks down into a solution, and the solid state of one or the other of the two components. This is illustrated by the system calcium fluoride calcium chloride, as shown in the fig. the decomposition of such a solid is referred to as a peritectic reaction or an incongruent melting. Thus the equimolar crystal: CaF2. CaCl2 of fig. breaks down at 737 degree C into a solution of composition B and solid CaF2. The dashed line shows how the diagram might have looked if the compound had survived to a real or congruent melting point. This line is helpful for visualizing the phase behavior but has, of course, no real significance.

Miscible solids: brief mention can be made, particularly in view of their importance as alloys, of system forming only one solid phase which is a solid solution. Such behavior is a result of complete mutual solubility of the solid phases in each other affects the phase diagram of a system that shows a simple eutectic. Such a partial solubility frequently occurs when the atoms of one component are small and can fit into the interstices of the lattice of the major component. In this way an interstitial alloy is formed. The carbon atoms in a carbon containing alloy are usually so accommodated.

Complete solubility of two solid phases usually results when the atoms of the two components are about the same size and can substitute for each other in the lattice to form a substitutional alloy. The system of copper and nickel shows this behavior. The upper of the two curves shows the temperature at which solutions of various compositions start to freeze. The lower curve gives the comparison of the solid which separates out at that freezing point. In this system the solid is always richer melting component than the solution from which it separates. The alloy consisting of 60 percent copper and 40 percent nickel is known as constantan.  

   Related Questions in Chemistry

  • Q : Amines why o-toluidine is a weaker base

    why o-toluidine is a weaker base than aniline?

  • Q : Reaction of calcium carbonate Give me

    Give me answer of this question. What is the volume of 0.1NHcl required to react completely with 1.0g of pure calcium carbonate : (Ca= 40, C= 12 and o = 16 ) (a)150cm3 (b)250cm3 (c)200cm3 (d)100cm3

    Q : Basic concept Give me answer of this

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Explain reactions of carbonyl oxygen

    In these reaction oxygen atom of carbonyl group is replaced by either one divalent group or two monovalent groups. Reaction by ammonia derivatives: aldehydes and ketones react with a number of ammonia derivatives such as hydroxylaminem hydrazine, semicarbazide etc. in weak acidic medium.

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Explain physical properties of

    . Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe

  • Q : Einsteins mass energy relation In

    In Einstein’s mass energy relation e = mc2 for what is c employed or why is light needed for the reactions. As the reactions are with the help of neutrons?

  • Q : Calculating amount of Sodium hydroxide

    Choose the right answer from following. The amount of NaOH in gms in 250cm3 of a0.100M NaOH solution would be : (a) 4 gm (b) 2 gm (c) 1 gm (d) 2.5 gm

©TutorsGlobe All rights reserved 2022-2023.