--%>

Schrodinger equation with particle in a box problem.

Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.

So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functions for a particle that is free to move in three dimensions are deduced. A molecule of a gas enclosed in a cubic container provides a specific example that is dealt with in the section after the general procedure has been developed.

For any three-dimensional problem, the potential energy is, general, a function of three coordinates. For a cubic potential box, the Cartesian coordinates are convenient. The differential equation that must be solved is now the Schrodinger equation in three dimensions.

1310_Particle in a box.png 

For a "cubic box," the potential function can be expressed in terms of separate x, y, and z components,
98_Particle in a box1.png 

Each of the potential function components for a "particle-in-a-box" is like the one-dimensional potential for a "particle-on-a-line".

For three-dimensional systems, the solution function ψ depends on the three coordinates necessary to locate a point in space. It is often profitable to try to separate such systems into parts, with each part involving only one coordinate. On the basis we try the substitution

ψ (x, y, z) = Ø(x)Ø(y)Ø(z)

Substitution of (2) from (1) gives

1350_Particle in a box2.png 

Division by Ø(x)Ø(y)Ø(z) gives

1180_Particle in a box3.png 

For the equation to be satisfied for all values of x, y and z, each term on the left must equal a component of ε, and we can write

ε = εx + εy + εz

The Schrodinger equation can then be broken down into three identical equations of the type

1394_Particle in a box4.png 

Or

578_Particle in a box6.png 

These equations are identical to that written for one-dimensional problem. The solution to the three-dimensional cubic-box problem is therefore

ψ =  Ø(x)Ø(y)Ø(z)

With

1809_Particle in a box7.png

   Related Questions in Chemistry

  • Q : Law of multiple proportions and Law of

    Describe the difference between law of multiple proportions and law of definite proportions?

  • Q : What is depression in freezing point?

    Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure. The freezing point o

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?

  • Q : Mole fraction Give me answer of

    Give me answer of following question. The sum of the mole fraction of the components of a solution is : (a) 0 (b) 1 (c) 2 (d) 4.

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Molal elevation constant of water The

    The boiling point of 0.1 molal aqueous solution of urea is 100.18oC  at 1 atm. The molal elevation constant of water is: (a) 1.8    (b) 0.18   (c) 18    (d) 18.6Answer: (a) Kb

  • Q : Problem on moles of solution The number

    The number of moles of a solute in its solution is 20 and total no. of moles are 80. The mole fraction of solute wil be: (a) 2.5 (b) 0.25 (c) 1 (d) 0.75

  • Q : Avogadro's hypothesis Law Principle

    Avogadro's hypothesis Law Principle- Berzelius, a chemist tried