--%>

Schrodinger equation with particle in a box problem.

Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.

So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functions for a particle that is free to move in three dimensions are deduced. A molecule of a gas enclosed in a cubic container provides a specific example that is dealt with in the section after the general procedure has been developed.

For any three-dimensional problem, the potential energy is, general, a function of three coordinates. For a cubic potential box, the Cartesian coordinates are convenient. The differential equation that must be solved is now the Schrodinger equation in three dimensions.

1310_Particle in a box.png 

For a "cubic box," the potential function can be expressed in terms of separate x, y, and z components,
98_Particle in a box1.png 

Each of the potential function components for a "particle-in-a-box" is like the one-dimensional potential for a "particle-on-a-line".

For three-dimensional systems, the solution function ψ depends on the three coordinates necessary to locate a point in space. It is often profitable to try to separate such systems into parts, with each part involving only one coordinate. On the basis we try the substitution

ψ (x, y, z) = Ø(x)Ø(y)Ø(z)

Substitution of (2) from (1) gives

1350_Particle in a box2.png 

Division by Ø(x)Ø(y)Ø(z) gives

1180_Particle in a box3.png 

For the equation to be satisfied for all values of x, y and z, each term on the left must equal a component of ε, and we can write

ε = εx + εy + εz

The Schrodinger equation can then be broken down into three identical equations of the type

1394_Particle in a box4.png 

Or

578_Particle in a box6.png 

These equations are identical to that written for one-dimensional problem. The solution to the three-dimensional cubic-box problem is therefore

ψ =  Ø(x)Ø(y)Ø(z)

With

1809_Particle in a box7.png

   Related Questions in Chemistry

  • Q : Number of moles present in water

    Provide solution of this question. How many moles of water are present in 180 of water: (a)1 mole (b)18 mole (c)10 mole (d)100 mole

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Dipole moment of chlorooctane

    Illustrate the dipole moment of chlorooctane?

  • Q : Wavelengths which the human eye can see

    Briefly state the wavelengths which the human eye can see?

  • Q : Describe Enzyme Catalyzed reactions

    Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system. Many rate equations that are more complex than first and se

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : Meaning of Molar solution Molar

    Molar solution signifies 1 mole of solute present/existed in: (i) 1000g of solvent (ii) 1 litre of solvent (iii) 1 litre of solution (iv) 1000g of solution

  • Q : Polyhalogen compounds introduction for

    introduction for polyhalogen compound

  • Q : Vapour pressure of the pure hydrocarbons

    Give me answer of this question. A solution has a 1 : 4 mole ratio of pentane to hexane. The vapour pressure of the pure hydrocarbons at 20°C are 440 mmHg for pentane and 120 mmHg for hexane. The mole fraction of pentane in the vapour phase would be: (a) 0.549 (b)