--%>

What is depression in freezing point?

Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure.

The freezing point of a pure liquid is preset. Now, if a non-volatile solute is dissolved in the pure liquid to constitute a solution, there occurs a lowering in the freezing point. The freezing point of solution refers to the temperature at which the vapour pressure of the solvent in two phases, i.e. liquid solution and solid solvent is the same. Since the vapour pressure of the solvent at a lower temperature.

Evidently the freezing point of the pure solvent is the temperature corresponding to the point B (T0 K) and that of the solution is the temperature corresponding to the point A'(T1 K). Clearly, (T0 - T1) or ΔTƒ is the freezing point depression. Since its magnitude is determined by that of lowering of vapour pressure, the freezing point depression depends upon the molal concentration of the solute and does not depend upon the nature of solid. It is, thus, a colligative property. The general relation between these two quantities for a solution of non-electrolyte is usually expressed in term of molality of the solution

ΔTƒ  Δp and Δp xB

ΔTƒ = kxB =415_freezing point.png 


For dilute solution, 272_freezing point1.png   and hence,1964_freezing point2.png.


ΔTƒ = k 1278_freezing point3.png  = k582_elevation in boiling point4.pngMA


If WA is the mass of solvent in kg, then   is equal to molality (m) of the solution

ΔTƒ = kMAm     (? kMA = Kƒ)

ΔTƒ =Kƒm, where Kƒ is called Freezing point depression constant or molal depression constant or cryoscopic constant.

As is clear from the above, depression in freezing point depends upon relative number of moles of solute and solvent but does not depend upon nature of solute, so it is a colligative property.

   Related Questions in Chemistry

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Relationship between free energy and

    The free energy of a gas depends on the pressure that confines the gas. The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 

  • Q : F-centres If a electron is present in

    If a electron is present in place of anion in a crystal lattice, then it is termed as: (a) Frenkel defect  (b) Schottky defect  (c) Interstitial defects (d) F-centre Answer: (d) When electrons are trapped in anion vacancies, thes

  • Q : Dependcy of colligative properties

    Colligative properties of a solution depends upon: (a) Nature of both solvent and solute (b) The relative number of solute and solvent particles (c) Nature of solute only (d) Nature of solvent only

  • Q : Reactivity of allyl and benzyl halides

    why allyl halide and haloarenes are more reactive than alkyl halide towards nucleophilic substitution

  • Q : Molar and Volumetric flow rate problem

    Cyclohexane (C6H12) is produced by mixing Benzene and hydrogen. A process including a reactor, separator, and recycle stream is used to produce Cyclohexane. The fresh feed contains 260L/min C6H6 with 950 L/min of H2

  • Q : Define the term oxidizing agent Briefly

    Briefly define the term oxidizing agent?

  • Q : Symmetry Elements The symmetry of the

    The symmetry of the molecules can be described in terms of electrons of symmetry and the corresponding symmetry operations.Clearly some molecules, like H2O and CH4, are symmetric. Now w

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w