--%>

What are halogen oxoacids?

Fluorine yields only one oxyacid, hypofluorous acid (HOF). Chlorine, bromine and iodine form four series of acids with formulae: HOX, HXO2, HXO3 and HXO4, although many of these are known only in solutions or as salts.
    
The Hypohalous acids HOCl, HOBr and HOI are weak acids and are only formed in aqueous solutions by disproportionation of the halogen of the halogen water

X2 + H21402_Phosphorus trichloride.png  HOX + HX (X = Cl, Br, I)

Salts of these acids are known as hypohalites, e.g. bleaching powder, CaOCl2 is a common example of this category.
    
The halic acids HClO3 and HBrO3 are also known as solutions, but iodic acid HIO3 exists as a white solid. Thus, the stability of acids increases with increase in atomic number of the halogen. These acids act as strong oxidizing agents, e.g. these oxidize halides to give halogens in acid medium.

OX3- + 5X- + 6H+  1402_Phosphorus trichloride.png  3X2 + 3H2O

The salts of these are called halates. Amongst the halates, sodium chlorate (NaClO3and potassium chlorate (KClO3are prepared on industrial scale. It is also known as 'Berthelot salt'. NaClO3 is a powerful weed killer, whilst KClO3 is used in fireworks and matches.
    
Perhalic acid i.e. perchloric, periodic acids as well as their salts perchlorates and periodates are known to exist. The perhalates (MXO4)are prepared by the electrolytic oxidation of the corresponding halates, MXO3.

4ClO3 1402_Phosphorus trichloride.png  Cl+ 3ClO4-

The disproportionation of BrO3- to BrO4- is unfavorable, therefore per bromates are obtained only by oxidation of BrO3- by F2 in basic solution.

BrO3- + F2 + 2OH-  1402_Phosphorus trichloride.png  BrO4+ 2F- + H2O

Acidic character of oxyacids: the variation in the acidic character of the halogen acids in different oxidation states are summarized below:
    
The acid strength of oxyacid of the same halogen increases with the increase in oxidation number of the halogen. For example, among the different oxyacids of chlorine the acidic character follows the order

HOCl < HClO2 < HClO3 < HClO4

Reason: the acid strength can be explained on the basis Lowry-Bronsted concept that conjucate base of weak and is strong and conjugate base of strong acid is weaker.

   Related Questions in Chemistry

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e

  • Q : Calculating value of molar solution

    Choose the right answer from following. An X molal solution of a compound in benzene has mole fraction of solute equal to 0.2. The value of X is: (a)14 (b) 3.2 (c) 4 (d) 2

  • Q : Define tripod and its use Illustrate a

    Illustrate a tripod? And how it’s used?

  • Q : Finding Active mass of urea Can someone

    Can someone please help me in getting through this problem. 10 litre solution of urea comprises of 240 gm urea. The active mass of urea is: (i) 0.04 (ii) 0.02 (iii) 0.4 (iv) 0.2

  • Q : Explanation of oxygen family. Group 16

    Group 16 of periodic

  • Q : Vapour pressure over mercury Choose the

    Choose the right answer from following. At 300 K, when a solute is added to a solvent its vapour pressure over the mercury reduces from 50 mm to 45 mm. The value of mole fraction of solute will be: (a)0.005 (b)0.010 (c)0.100 (d)0.900

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Problem on Osmotic Pressure of solution

    The osmotic pressure of a 5% solution of cane sugar at 150oC  is (mol. wt. of cane sugar = 342)(a) 4 atm (b) 3.4 atm (c) 5.07 atm (d) 2.45 atmAnswer: (c) Π = (5 x 0.0821 x 1000 x 423)/(342 x 100) = 5.07 atm