--%>

Explanation of oxygen family.

Group 16 of periodic table contains five elements namely, oxygen (O), sulphur (S), selenium (Se), tellurium (Te) and polonium (Po). These are collectively known as chalcogens or ore forming elements because many metal ores occur as oxides and sulphides. These elements belong to p-block. The first four members of group 16 are non-metals. Polonium has metallic character and is a radioactive element with a very short period.

Oxygen, the most abundant element, is a vital element of atmosphere and ocean. It composes 46.6% of earth's crust. It forms about 21% of air as the free element and 89% of the ocean by weight. Sulphur is less abundant and occurs about 0.052% of the earth's crust. Sulphur is also referred as Brim stone. The name sulphur is derived from Sanskrit word 'Sulveri' which means 'killer of copper'. Compared to oxygen and sulphur the other members of this group are rare.

Atoms of these elements have outer electronic configuration as ns2np4, where n varies from 2 to 6. The electronic configurations of the elements of group 16 are shown in the table below:

Elements

At. No.

Electronic configuration

Abundance in earth's crust (ppm)

Oxygen (O)

8

[He] 2s2 2p4

4.66 × 105

Sulphur (S)

16

[Ne] 3s2 3p4

5.20 × 102

Selenium (Se)

34

[Ar] 3d10 4s2 4p4

9.0 × 10-2

Tellurium (Te)

52

[Kr] 4d10 5s2 5p4

2 × 10-3

Polonium (Po)

84

[Xe] 4f14 5d10 6s2 6p4

-


The four p-electrons of the outermost shell are arranged as px2 py1 pz1. Thus, there are two half-filled p-orbitals which are used for bonding with other elements. From the similar outer electronic configuration of these elements, it is expected that they will show similar physical and chemical properties.

Oxygen the first member of this group has very high ionization energy (1314 kJ mol-1and differs markedly from other members of the family.

Oxygen, on the other hand, is found to exhibit remarkable resemblance with its neighbours, nitrogen and fluorine. For example, it forms strong pπ-pπ bond like nitrogen. Also it forms hydrogen bonds like nitrogen and fluorine.

   Related Questions in Chemistry

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Organic structure of cetearyl alcohol

    Show the organic structure of cetearyl alcohol and state what the organic family is? Briefly state it.

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : Benzoic acid is weaker than paranitro

    Briefly state that Benzoic acid is weaker than paranitro benzoic acid?

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : HCl polarity Illustrate HCl is polar or

    Illustrate HCl is polar or non-polar?

  • Q : Vapour pressure related question Help

    Help me to solve this question. Which of the following is incorrect: (a) Relative lowering of vapour pressure is independent (b)The vapour pressure is a colligative property (c)Vapour pressure of a solution is lower than the vapour pressure of the solvent (d)The

  • Q : What are lattices and unit cells? The

    The repeating, atomic level structure of a crystal can be represented by a lattice and by the repeating unit of the lattice, the unit cell.It was apparent very early in the study of crystals that the shapes of crystals stem from an ordered array of smaller