--%>

Explanation of oxygen family.

Group 16 of periodic table contains five elements namely, oxygen (O), sulphur (S), selenium (Se), tellurium (Te) and polonium (Po). These are collectively known as chalcogens or ore forming elements because many metal ores occur as oxides and sulphides. These elements belong to p-block. The first four members of group 16 are non-metals. Polonium has metallic character and is a radioactive element with a very short period.

Oxygen, the most abundant element, is a vital element of atmosphere and ocean. It composes 46.6% of earth's crust. It forms about 21% of air as the free element and 89% of the ocean by weight. Sulphur is less abundant and occurs about 0.052% of the earth's crust. Sulphur is also referred as Brim stone. The name sulphur is derived from Sanskrit word 'Sulveri' which means 'killer of copper'. Compared to oxygen and sulphur the other members of this group are rare.

Atoms of these elements have outer electronic configuration as ns2np4, where n varies from 2 to 6. The electronic configurations of the elements of group 16 are shown in the table below:

Elements

At. No.

Electronic configuration

Abundance in earth's crust (ppm)

Oxygen (O)

8

[He] 2s2 2p4

4.66 × 105

Sulphur (S)

16

[Ne] 3s2 3p4

5.20 × 102

Selenium (Se)

34

[Ar] 3d10 4s2 4p4

9.0 × 10-2

Tellurium (Te)

52

[Kr] 4d10 5s2 5p4

2 × 10-3

Polonium (Po)

84

[Xe] 4f14 5d10 6s2 6p4

-


The four p-electrons of the outermost shell are arranged as px2 py1 pz1. Thus, there are two half-filled p-orbitals which are used for bonding with other elements. From the similar outer electronic configuration of these elements, it is expected that they will show similar physical and chemical properties.

Oxygen the first member of this group has very high ionization energy (1314 kJ mol-1and differs markedly from other members of the family.

Oxygen, on the other hand, is found to exhibit remarkable resemblance with its neighbours, nitrogen and fluorine. For example, it forms strong pπ-pπ bond like nitrogen. Also it forms hydrogen bonds like nitrogen and fluorine.

   Related Questions in Chemistry

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Lowering of vapour pressure Help me to

    Help me to go through this problem. Lowering of vapour pressure is highest for: (a) urea (b) 0.1 M glucose (c) 0.1M MgSo4 (d) 0.1M BaCl2

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Relative lowering in vapour pressure of

    Give me answer of this question. "Relative lowering in vapour pressure of solution containing non-volatile solute is directly proportional to mole fraction of solute". Above statement is: (a) Henry law (b) Dulong and Petit law (c) Raoult's law (d) Le-Chatelier's pri

  • Q : Production of alcoholic drinks give all

    give all physical aspects in the production of alcohol

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml