--%>

Explanation of oxygen family.

Group 16 of periodic table contains five elements namely, oxygen (O), sulphur (S), selenium (Se), tellurium (Te) and polonium (Po). These are collectively known as chalcogens or ore forming elements because many metal ores occur as oxides and sulphides. These elements belong to p-block. The first four members of group 16 are non-metals. Polonium has metallic character and is a radioactive element with a very short period.

Oxygen, the most abundant element, is a vital element of atmosphere and ocean. It composes 46.6% of earth's crust. It forms about 21% of air as the free element and 89% of the ocean by weight. Sulphur is less abundant and occurs about 0.052% of the earth's crust. Sulphur is also referred as Brim stone. The name sulphur is derived from Sanskrit word 'Sulveri' which means 'killer of copper'. Compared to oxygen and sulphur the other members of this group are rare.

Atoms of these elements have outer electronic configuration as ns2np4, where n varies from 2 to 6. The electronic configurations of the elements of group 16 are shown in the table below:

Elements

At. No.

Electronic configuration

Abundance in earth's crust (ppm)

Oxygen (O)

8

[He] 2s2 2p4

4.66 × 105

Sulphur (S)

16

[Ne] 3s2 3p4

5.20 × 102

Selenium (Se)

34

[Ar] 3d10 4s2 4p4

9.0 × 10-2

Tellurium (Te)

52

[Kr] 4d10 5s2 5p4

2 × 10-3

Polonium (Po)

84

[Xe] 4f14 5d10 6s2 6p4

-


The four p-electrons of the outermost shell are arranged as px2 py1 pz1. Thus, there are two half-filled p-orbitals which are used for bonding with other elements. From the similar outer electronic configuration of these elements, it is expected that they will show similar physical and chemical properties.

Oxygen the first member of this group has very high ionization energy (1314 kJ mol-1and differs markedly from other members of the family.

Oxygen, on the other hand, is found to exhibit remarkable resemblance with its neighbours, nitrogen and fluorine. For example, it forms strong pπ-pπ bond like nitrogen. Also it forms hydrogen bonds like nitrogen and fluorine.

   Related Questions in Chemistry

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : What type of bond does HCl encompass

    What type of bond does HCl encompass? Describe briefly?

  • Q : Molarity of cane sugar solution 171 g

    171 g of cane sugar (C12H22O11)  is dissolved in one litre of water. Find the molarity of the solution: (i) 2.0 M (ii) 1.0 M (iii) 0.5 M (iv) 0.25 M Choose the right answer from above.

  • Q : Normality of solution containing

    Can someone please help me in getting through this problem. Determine the normality of a solution having 4.9 gm H3PO4 dissolved in 500 ml water: (a) 0.3  (b) 1.0  (c) 3.0   (d) 0.1

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : Electron Spin The total angular

    The total angular momentum of an atom includes an electron spin component as well as an orbital component.The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional

  • Q : Haloalkane how haloalkane can be

    how haloalkane can be prepared by refluxing alcohol with hydrohalic acids

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li