--%>

Explain Ionic Bond with examples.

The bonding in ionic molecules can be described with a coulombic attractive term.

For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulombic attraction between ions. Since the electronic details of these ions are not dealt with the approach does not require quantum mechanical calculations. The treatment is easier but, as you will see, less satisfying than those in which a complete quantum mechanical description is set up and, with various recognized simplifications, solved.

Let us consider, to be specific, the NaCl molecule. The molecule exists in the high temperature vapour, and its bonding energy and equilibrium bond length and some features of its energy versus internuclear distance curve are known. These are shown by the solid curve of the products of dissociation of an NaCl molecule are the gas phase Na and Cl atoms.

Now let us attempt to develop an energy intermolecular distance curve by using the internuclear model. The energy required converting Na atoms to Na+ ions and Cl atoms to Cl- ions, all in the gas state, can be calculated from ionization:

Na 2118_First order reactions1.png Na = + e         ?U = =495 kJ mol-1

Cl + e- 2118_First order reactions1.png Cl-              ?U = - 349 KJ mol-1

And thus,

Na = Cl 2118_First order reactions1.png Na+ + Cl-    ?U = + 146 KJ mol-1

Infinitely separated gas phase Na and Cl ions lie at an energy 147 KJ mol-1 higher than separateNa and Cl atoms.

As Na+ and Clions approach each other, the potential energy becomes more negative. If we treat the ions at point charges, this potential energy is given by the coulombic term:

Ucoul = - e2/ (4∏e0)/ r

Where r is the internuclear distance, a curve for this function, based on the energies of separateNa+ and Cl- ions has been added.

An opposing effect exists in the form of repulsion between the nuclei, each with its closed shell of electrons. This repulsion term cannot easily be deduced, and it is satisfactory here to use an empirical expression to represent the repulsion that sets in at small internuclear distances. The variation of this repulsive energy contribution with internuclear distance is satisfactorily represented by an empirical equation of the form:

Urep = be-r/p, where p and b are empirical constants.

Furthermore, to a quite good approximation, the constant p can be taken to be the same for all ionic molecules and equal to 0.30 × 10 -10 m = 30 pm. Thus,

Urep = be -r/(0.30 × 10-10)

The total potential energy can now be written as:

U = - e2/(4∏e0)/r + be -r/(0.30 × 10-10)


The value of the remaining empirical constant b can be deduced by requiring U to have a minimum at the experimentally determined equilibrium bond length. Setting the derivate equal to zero for r = 2.36 × 10-10 m, the equilibrium bond length for NaCl, gives b = 1.95 × 105 kJmol-1. Substitution of the numerical value e2/(4∏eo) and expressing r in picometers gives:

U(kJ mol-1) = - 138,900/r + 195,000e-r/30 (r in picometers)


Calculated dissociation energy = 514 - 146 = 368 KJ mol-1

The result can be compared with the experiment value of 406 kJ mol-1

The attraction energy curve, the repulsion energy curve, and the total energy curve are the ionic model describes the system satisfactorily up to an internuclear separation of about 100 pm. Then the bond description must changes so that at complete separation the products released from each other are atoms rather than ions. 

   Related Questions in Chemistry

  • Q : Molecular weight of solute Select right

    Select right answer of the question. A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water. There is the depression in weight of solution wt by 2.5 gm and in weight of pure solvent by 0.05 gm. C

  • Q : Question based on mole concept Help me

    Help me to solve this Question. The number of moles of SO2Cl2 in 13.5 gm is in is : (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4

  • Q : Molar conductance what is the molar

    what is the molar conductance of chloropentaamminecobalt(III) chloride?

  • Q : Relative lowering of the vapour pressure

    Choose the right answer from following.The relative lowering of the vapour pressure is equal to the ratio between the number of: (a) Solute moleules and solvent molecules (b) Solute molecules and the total molecules in the solution (c) Solvent molecules and the tota

  • Q : What are the various types of drugs

    Drugs are broadly classified into following types depending on the purpose for which they are used. 1. Antipyretics

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Colligative property associated question

    Give me answer of this question. Which of the following is not a colligative property : (a)Optical activity (b)Elevation in boiling point (c)Osmotic pressure (d)Lowering of vapour pressure

  • Q : What is Flash Photolysis Reactions.

    An example illustrates the type of mechanism that can be written to explain the development of flash photolysis reactions. Often, as the reactions in the ozone layer of the earth's atmosphere, we are interested in the kinetic behavior of species that are not a

  • Q : Vant Hoff factor The Van't Hoff factor

    The Van't Hoff factor of the compound K3Fe(CN)6 is: (a) 1  (b) 2  (c) 3  (d) 4  Answer: (d) K3[Fe(CN)6] → 3K+

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl