--%>

Explain Second Order Rate Equations.

Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.

A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one of the reagents or to the product of the concentrations of two species of the reagents. The second situation leads to the same equations as the first if the two reactants are used up at the same rate and if their initial concentrations are equal.

Rate = kc2. For these situations, the rate equation is

-dc/dt = kc2, where c is the concentration of the single reagent or one of the two reagents. Again the kinetic data are usually compared with the integrated form of the equation. One has

- 966_second order rate equation.png dc/c2 = k 283_second order rate equation1.png dt

And

1/c - 1/c0 = kt

A reaction of the types considered so far is therefore second order if a plot of 1/c versus t gives a straight line. The slope of the straight line is equal to the rate constant. Equation shows, this constant involves the units of concentrations, differing in this respect from the first order rate constant that involves only the units of time. Furthermore, the time for the concentration to drop to half its initial value is deduced from equation to be

t1/2 = 1/kc
0

The half life therefore depends on the initial concentration and is not a convenient way of expressing the rate constant of second order reactions.

Example: use of second order half life expression to verify that the rates used which were obtained for periods of reaction up to about 30 min, were indeed "initial rates".

Solution: 
although the concentrations of the two reactants, iodine ions and peroxydisulfate ions, reported are somewhat different we can use a representative value of 0.01 mol L-1. Then with k = 0.36 mol-1 L min-1, gives 

t1/2 = 1/(0.36 mol-1 L min-1) (0.01 mol L-1)

= 300 min

About half the reactants would be used up in 300 min. since the reaction was studied only in times up to about 10 min, the initial concentration could not have changed appreciably. The method of initial rates was applicable.

Rate = kcA cB: instead of working with the concentration of the reacting species, as was done with previous equation, it is more convenient to develop the rate equation by introducing a term for the amount of reaction that has occurred at time t. the overall reaction might, for example, be of the form

A + B 1187_First order reactions1.png products

If it is inconvenient to arrange to have the initial concentrations of A and B equal the analysis that led to equation cannot be used, but the kinetic data can be treated in terms of the following quantities:

a = initial concentration of A

b = initial concentration of B

X = decrease in A or B at time t = amount of product at time t

a - x = concentration of A at time t

b - x = concentration of B at time t

The differential second order rate equation would then be 

dx/dt = k[A][B] = k(a - x)(b - x)

The integration can be performed by using partial fractions. Thus

dx/(a - x)(b - x) = k dt


leads to the integral 

1/a - b 353_second order rate equation2.png (- dx/a - x + dx/b - x) = k 283_second order rate equation1.png dt


On integration this gives

1/a - b [In (a - x) - In (b - x)]0x = kt

Insertion of the limits and rearrangement give, finally,

1/a - b In b(a - x)/a(b - x) = kt

   Related Questions in Chemistry

  • Q : Chemical formula of detergent Describe

    Describe the chemical formula of detergent?

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : Explain methods for industrial

    The important methods for the preparation of alcohol on large-scale are given below:    

  • Q : How to calculate solutions ionic

    Transference numbers and molar conductors can be used to calculate ionic mobilities. This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

    Q : What is ortho effect? Orthosubstituted

    Orthosubstituted anilines are generally weaker bases than aniline irrespective of the electron releasing or electron withdrawing nature of the substituent. This is known as ortho effect and may probably be due to combined electronic and steric factors.The overall basic strength of ort

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : Liquid Vapour Free Energies The free

    The free energy of a component of a liquid solution is equal to its free energy in the equilibrium vapour.Partial molal free energies let us deal with the free energy of the components of a solution. We use these free energies, or simpler concentration ter

  • Q : Avogadros hypothesis how avogadros

    how avogadros hypothesis used to deduce the atomicity of elementry gases ?