Relationship between free energy and pressure

The free energy of a gas depends on the pressure that confines the gas.


The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 1-bar pressure. For these free-energy data to be of more general use, a means must be available for calculating free energies at other pressures and temperatures.

To start, we form a complete and detailed description for changes in free energy. From the defining equations G = H - TS and H = U + PV we obtain 

dG = dU + P dV + V dP - T dS - S dT

This expression has redundancies in it and can be simplified. The state of the system is determined when the temperature and the pressure, or one of these and one of the properties of the system, are fixed. Changes in any two of these variables determined the change in the state of the system. It follows that the change in any property of the system can be expressed in terms of changes in any two of these variables.

First, we deal with an "ordinary" process in which no mechanical energy other than P dV energy is evolved. In this case P dV = dUmech. Second, we imagine that the states of the system that we are considering can be connected by a reversible process. For such a process dS + dStherm = dS + dUtherm/T = 0, or T dS = -dUtherm. With these stipulation becomes,

dG = dU + dUmech + V dP + dUtherm - S dT

the first law sets the combination of the three U terms to zero, and we have

dG = V dP - S dT

we have arrived at an expression for changes in the free energy in the terms of changes in just two state-determining variables.

Now think of the free energy G as being a property of the system and, therefore, dependent on the state of the system. If this state is specified by  the temperature and the pressure, we can write the general total differential

dG = (∂G/∂P)T dp + (∂G/∂T)P dT

Comparison with equation lets us make the identifications

(∂G/∂P)T = V


And 

(∂G/∂P)P = -S


These results show how the free energy property changes when, separately, the pressure or the temperature is changed.

Notice that we arrived at these results by considering a special type of process. But since G is a property of the system, it will change by a certain amount when the pressure or temperature is changed, for any type of process.

We deal with the dependence of free energy on temperature and now we follow up on the expression obtained for the pressure dependence.

Liquids and solids have small molar volumes compared with gases. For many purposes the pressure dependence of the free energy of liquids and solids can be neglected.

For gases the dependence of free energy on pressure is appreciable and important. For an ideal gas, P and V are related by the ideal gas law, and the integration can be performed to give the free-energy change when the pressure is changed from P1 to P2 at constant temperature. Thus

G2 - G= ∫V dP = nRT ∫P2P1 dP/P = nRT In P2/P1

Of particular interest is the extent to which the free energy changes from its standard state value when the pressure changes from 1 bar. If state 1 is the standard state, then

P1 = 1 bar and G1 = G° 

P2 = P bar and G2 = G

With this notation for states 1 and 2 it can be we written for 1 mol as

G - G° = RT In P/1 bar

Or G = G° + RT In P [T const, P in bar, and 1 mol of an ideal gas]    

   Related Questions in Chemistry

  • Q : Why aryl halides are less reactive?

    Aryl halides are much less reactive towards nucleophilic substitution reactions than haloalkanes. The less reactivity of aryl halides can be described

  • Q : Direction of dipole moment expected

    Illustrate the direction of the dipole moment expected for hydrogen bromide?

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n

  • Q : What is heat capacity and how to

    The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure. The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the

  • Q : Dipole moment of chloro-octane Describe

    Describe the dipole moment of chloro-octane in brief?

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute

  • Q : How haloalkanes are prepared from

    Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.    From alkanesWhen alkanes are treated with halogens, chlo

©TutorsGlobe All rights reserved 2022-2023.