--%>

Energy in the home-personal energy use-energy efficiency

Energy in the home personal energy use and home energy efficiency.

Estimate your personal Annual Energy Usage for the following - list all data in kWh (KiloWatt hours):

Space Heating (Central heating, room heaters etc. - if you share a central system, e.g. in a flat or Hall, estimate your personal use).

Space cooling (if you have air conditioning at home)

Cooking (Gas cooker, microwave, sandwich toaster, toaster etc.)

Lighting (All lights in your house/flat)

Other domestic use (TV, Electronics, including computers, X-box etc)

Transport (Public transport/car/motor cycle, including air travel if used)

Total ______________kWh

Then convert this figure to kg of CO2 (Carbon dioxide) and Tonnes of Oil Equivalent (TOE). State clearly the basis for your calculations.

If you use a web based calculator you should check that the conversions are appropriate for your location.

(If the calculator does not state conversion factors, you can usually determine them by putting single inputs (e.g. 1000kW electricity) into calculator and seeing what the output is).

TOTAL (kg of CO2)........................................

TOTAL (TOE)...................................................

The average UK per capita consumption is ~4TOE/annum,

The average UAE per capita consumption is ~11TOE/annum

Suggest why your figure might differ significantly from this.

(You may want to list, but not quantify, some major indirect uses of energy) 3

NOW:

(a) Identify one item of energy saving equipment which you could incorporate in your house/flat/room or apartment block to replace one of your existing items mentioned above.

(You will receive higher marks, in general, if you successfully address a more sophisticated energy saving measure than low energy light bulbs!)

(b) Estimate the installed cost of the item and the annual savings (energy and financial) which would result.

(c) Hence estimate the simple payback period.

(d) Why have you not installed this equipment? (Note: if you live on Campus or rent a room, imagine you are the owner the flat apartment block etc. when answering this question). 4 

   Related Questions in Mechanical Engineering

  • Q : Powder Technology Explain the term

    Explain the term Powder Technology?

  • Q : Product performance in Product design

    Product performance: Depending on the product, this may take many forms. Speed, loads to be withstood, number of work cycles, and intermittent or continuous working are some examples of considerations. 

  • Q : Petroleum technology theories for the

    theories for the origin of petroleum, methods for detection of petroleum deposits, fractional distillation

  • Q : Undamped single degree of freedom (a)

    (a) The response for an undamped single degree of freedom system under free vibration is given as where ωn is the natural frequency and A and B are unknown that can be determined from the initial conditions. The response 

  • Q : Numerically controlled Mechatronics

    What do you mean by Numerically controlled Mechatronics and what are its components?

  • Q : Problem on degree of freedom Draw a

    Draw a frequency-response curves for a damped single degree of freedom system subjected to a harmonic excitation under three different damping ratios. System has a natural frequency of ωn as the forcing frequency of the excitation is ω. Describe

  • Q : Unilateral and Bilateral Tolerance

    Explain difference between the Unilateral and Bilateral Tolerance?

  • Q : Problem on discharge head loss Water is

    Water is draining from the tank A to tank B. The elevation difference among the two tanks is 10 m. The pipe joining the two tanks has a sudden-expansion section as shown below. The cross-sectional area of the pipe from A is 8 cm2, and the area of the pipe f

  • Q : Efficient use of waste heat and

    Efficient use of waste heat and renewable heat sources 1. Describe how you might recover heat from (a) a process exhaust gas stream (e.g. from an oven) and (b) a process warm water stream (e.

  • Q : Problem on motion of the system (a) A

    (a) A plane moving at a constant velocity, V, crashes into a building as shown in figure below. Due to the design against plane crash of that building, neither major damage nor explosion occurs but the building vibrates after the crash. Assuming that the building can