--%>

Electron Spin

The total angular momentum of an atom includes an electron spin component as well as an orbital component.

The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional angular momentum contribution comes from the “spin of the electrons.”

The direct experimental demonstration of an electron feature that is described as spin angular momentum was given by the atomic beam studies of O. Stern and W. Gerlach. In the original experiments, a beam of silver atoms was passed through a magnetic field. The result was a splitting of the atom into two components. Thus, when a directional field is composed, two different states of silver atoms can be recognized.

The lowest energy electronic state of silver atoms consists of inner shells of electrons and a single outer shell electron in atom in an s orbital. No additional states should be developed when a directional field is applied to this spherically symmetric, zero angular momentum atom. The Stern-Gerlach results supported the idea that the silver atoms have an angular momentum of ½ h/ (2∏), or 1/2 h, which results from the intrinsic angular momentum of the electron. The magnetic field distinguishes those atoms with a spin angular momentum directed with and opposed to the field. If the electron spins quantum number s has a value of 1/2, jection of the spin angular momentum along an imposed direction is given by m2, h, where m2 = +1/2 or – ½.

In describing the electronic makeup of atoms, we use angular momentum to characterize the atomic states. From the above equations the orbital angular momentum contribution of an electron is √l (l + 1) h, where l = 0, 1, 2 …  now there is, in addition, an electronic spin angular momentum contributions are used  to describe the states of many electron atoms.

   Related Questions in Chemistry

  • Q : What are methods of phenol preparation

    Phenol was initially obtained by fractional distillation of coal

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Vant Hoff factor The Van't Hoff factor

    The Van't Hoff factor of the compound K3Fe(CN)6 is: (a) 1  (b) 2  (c) 3  (d) 4  Answer: (d) K3[Fe(CN)6] → 3K+

  • Q : Depression in the freezing point When

    When 0.01 mole of sugar is dissolved in 100g of a solvent, the depression in freezing point is 0.40o. When 0.03 mole of glucose is dissolved in 50g of the same solvent, depression in the freezing point will be:(a) 0.60o  (b) 0.80o

  • Q : Mcq Give me answer of this question.

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : C-X bond length in halobenzene less

    C-X bond length in halobenzene less then C-X bond lengthin CH3-x

  • Q : Which solution will have highest

    Which solution will have highest boiling point:(a) 1% solution of glucose in water  (b) 1% solution of sodium chloride in water  (c) 1% solution of zinc sulphate in water  (d) 1% solution of urea in waterAnswer: (b) Na

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : Finding strength of HCL solution Can

    Can someone please help me in getting through this problem. 1.0 gm of pure calcium carbonate was found to require 50 ml of dilute  HCL for complete reaction. The strength of the HCL  solution is given by: (a) 4 N  (b) 2 N  (c) 0.4 N  (d) 0.2 N

  • Q : Calculate molarity of a solution

    Provide solution of this question. Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 540 ml solution is: (a) 3.05 M (b) 1.35 M (c) 2.50 M (d) 4.50 M