--%>

How molecule-molecule collisions takes place?

An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions.


We begin studies of elementary reactions by investigating the collisions between the molecules of a gas. We are led to expression for the average distance that a molecule of a gas travels between collisions with other molecules and to two quantities that express the number of molecule-molecule collisions which occur in a unit time travel.

Consider a particular molecule A with diameter d, moving in the direction indicated. If the speed of molecule A is v, m remain stationary, molecule A will collide in 1 s with all the molecules that have remain centered within the cylinder. The volume of the cylinder whose radius is equal to the molecular diameter d is ∏d2-vN*, is the diameter of molecules per unit volume. The mean free path, i.e. the distance traveled between collisions, is the free path length.

L = -v/∏d2-vN* = 1/∏d2N*

A more detailed calculation shows that this result is not exactly correct. The assumption that only molecule A moves implies a relative speed of the colliding molecules of v. in fact if the molecules are all moving with speed v-, all types of collisions will occur, ranging from glancing collisions, where the relative angles to each other and the relative speed is √2v-. a correct result can be obtained in place of these recognitions that although molecule A moves a distance v- in 1 s, it collides with other molecules with a relative speed of √2v-. The mean path is then written as:

L = 1/ √2∏d2N*

How far a molecule travels between collisions has now been shown to depend on the number of molecules per unit volume and so on, the molecular diameter d.

The second matter to be investigated is the number of collisions per second that a molecule makes. This collision frequency is denoted by Z1. In relation to the other molecules, the molecule A travels with an effective speed equals to the number of molecules in a cylinder of radius d and of length √2v. We therefore have:

Z1 = 9√2u-) (∏d2)N* = √2∏d2vN*

The last matter to be investigated is the number of collisions occurring in a unit volume per unit time. As can be imagined, this quantity is of considerable importance in understanding the rates of chemical reactions. The number of collisions per second per unit volume is called the collision rate, denoted Z11.

The collision rate Z11 is closely related to the collision frequency Zt. Since there are N*molecules per unit volume and each of these molecules collided and not contacted twice. We therefore obtain 

Z11 = ½ √2∏d2v- (N*)2 = 1/√2 ∏d2v- (N*)

The mean free path, the collision frequency, and the collision have now been expressed in equations that involves the molecular diameter d. since the molecular speeds and the number of molecules per cubic meter of a particular gas can be determined, only molecular diameters need be known in order to evaluate l, Z1 and Z11. Many methods are available for determining the size of molecules.

Instance: use the collision diameter value of d = 374 pm to calculate the collision properties L, Z1 and Z11 for N2 at 1 bar and 25 degree C.

Answer: the number of molecules in 1 m3 is:

N* = 6.022 Χ 1023/ 0.0248 m3 = 2.43 Χ 1025 m-3

The mass of mole of N2 molecules is:

M = 0.02802 kg

The average molecular speed form v- = [8kT/(∏m)]½ = [8RT/∏M]½ here we have;

v- = [8(8.314 JK-1 mol-1) (298 K)/ ∏ (0.02802 kg mol-1)] = 475 ms-1

   Related Questions in Chemistry

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : Extensive property Choose the right

    Choose the right answer from following. Which one of the following is an extensive property: (a) Molar volume (b) Molarity (c) Number of moles (d) Mole fraction

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Explain alcohols and phenols in organic

    Alcohols and phenols are the compounds

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Question based on lowest vapour pressure

    Give me answer of this question. Among the following substances the lowest vapour pressure is exerted by: (a) Water (b) Mercury (c) Kerosene (d) Rectified spirit

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

  • Q : Explain the process of adsorption of

    The extent of adsorption of a gas on a solid adsorbent is affected by the following factors: 1. Nature of the gas Since physical adsorption is non-specific in nature, every gas will get adsorbed on the

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS