--%>

Effect on vapour pressure of dissolving substance

Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher freezing point than the solvent (d) The solution having a lower osmotic pressure than the solvent

 

   Related Questions in Chemistry

  • Q : Avogadros hypothesis how avogadros

    how avogadros hypothesis used to deduce the atomicity of elementry gases ?

  • Q : Question on molality Provide solution

    Provide solution of this question. Which of the following concentration factor is affected by change in temperature : (a)Molarity (b) Molality (c)Mole fraction (d)Weight fraction

  • Q : State substituted hydrocarbon Elaborate

    Elaborate a substituted hydrocarbon?

  • Q : Difference among hcl gas and hcl acid

    What is the basic difference among hcl gas and hcl acid? Briefly state the difference?

  • Q : Polymers comparison of biodegradable

    comparison of biodegradable and non-biodegradable polymers

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : What is laser and explain its working?

    Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the

  • Q : Entropy on molecular basis. The

    The equation S = k in W relates entropy to W, a measure of the number of different molecular level arrangements of the system.In the preceding developments it was unnecessary to attempt to reach any "explana

  • Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r