--%>

Explain oxygen and its preparation.

Karl Scheele, the Swedish chemist, was the first to prepare oxygen by heating mercuric oxide in 1772. He recognized the gas as one of the major constituents of atmospheric air and called it 'fire air'. Joseph Priestley, the English chemist also prepared oxygen by focusing the sun rays by means of a double lens on mercuric oxide. Priestley published his results in 1774 and has been regarded as the discoverer of oxygen. However, its elemental nature was proved by Lavoisier.

Oxygen is first element of group 16 of periodic table. It may be called the head of chalcogens family. Its configuration (1s22s22p4)shows the presence of six electrons in the valence shell. It does show some characteristics which are not shown by other members of the family because of its small size. For example, it is able to form pπ-pπ bonding and exists as diatomic molecule (O2). The other elements of the group do not exist as diatomic molecule due to their inability to form pπ-pπ bonding.

Isotopes of oxygen

Oxygen has three naturally occurring isotopes which are:

1870_dioxygen.png 

Out of these three isotopes, O-18 is radioactive in nature and finds frequent use in studying the mechanisms of organic reactions and other trace techniques. Like hydrogen, oxygen also exists in the elementary form as diatomic molecule (O2) and is referred to as dioxygen. 

Terrestrial abundance and distribution

Oxygen is the most abundant element on the surface of the earth. In Free State, it occurs in air and constitutes 21% by volume of air and 23% by weight. In the combined state, it constitutes 89% by mass of water and 50% by mass of earth's solid crust. In earth's solid crust, it is mainly present as silicates, carbonates, aluminates and oxides of metals.

Almost all the dioxygen in atmosphere is believed to be the result of photosynthesis by green plants which can be represented as 

1915_dioxygen1.png 

   Related Questions in Chemistry

  • Q : Vapour pressure related question Help

    Help me to solve this question. Which of the following is incorrect: (a) Relative lowering of vapour pressure is independent (b)The vapour pressure is a colligative property (c)Vapour pressure of a solution is lower than the vapour pressure of the solvent (d)The

  • Q : Molar mass lculwhat is the equation for

    lculwhat is the equation for caating molar mass of non volatile solute

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Question on Raoults law Give me answer

    Give me answer of this question. For a dilute solution, Raoult's law states that: (a) The lowering of vapour pressure is equal to mole fraction of solute (b) The relative lowering of vapour pressure is equal to mole fraction of solute (c) The relative lowering of v

  • Q : Determining concentration in ppm A 500

    A 500 gm tooth paste sample has 0.2g fluoride concentration. Determine the concentration of F in terms of ppm level: (a) 250 (b) 200 (c) 400 (d) 1000Answer: (c) F-ions in ppm = (0.2/500) x 106 = 400

  • Q : Entropy on molecular basis. The

    The equation S = k in W relates entropy to W, a measure of the number of different molecular level arrangements of the system.In the preceding developments it was unnecessary to attempt to reach any "explana

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are

  • Q : P block bif3 is ionic while other

    bif3 is ionic while other trihalides are covalent in nature

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop

  • Q : Wavelengths which the human eye can see

    Briefly state the wavelengths which the human eye can see?