--%>

Explain oxygen and its preparation.

Karl Scheele, the Swedish chemist, was the first to prepare oxygen by heating mercuric oxide in 1772. He recognized the gas as one of the major constituents of atmospheric air and called it 'fire air'. Joseph Priestley, the English chemist also prepared oxygen by focusing the sun rays by means of a double lens on mercuric oxide. Priestley published his results in 1774 and has been regarded as the discoverer of oxygen. However, its elemental nature was proved by Lavoisier.

Oxygen is first element of group 16 of periodic table. It may be called the head of chalcogens family. Its configuration (1s22s22p4)shows the presence of six electrons in the valence shell. It does show some characteristics which are not shown by other members of the family because of its small size. For example, it is able to form pπ-pπ bonding and exists as diatomic molecule (O2). The other elements of the group do not exist as diatomic molecule due to their inability to form pπ-pπ bonding.

Isotopes of oxygen

Oxygen has three naturally occurring isotopes which are:

1870_dioxygen.png 

Out of these three isotopes, O-18 is radioactive in nature and finds frequent use in studying the mechanisms of organic reactions and other trace techniques. Like hydrogen, oxygen also exists in the elementary form as diatomic molecule (O2) and is referred to as dioxygen. 

Terrestrial abundance and distribution

Oxygen is the most abundant element on the surface of the earth. In Free State, it occurs in air and constitutes 21% by volume of air and 23% by weight. In the combined state, it constitutes 89% by mass of water and 50% by mass of earth's solid crust. In earth's solid crust, it is mainly present as silicates, carbonates, aluminates and oxides of metals.

Almost all the dioxygen in atmosphere is believed to be the result of photosynthesis by green plants which can be represented as 

1915_dioxygen1.png 

   Related Questions in Chemistry

  • Q : Explosions produce carbon dioxide

    Illustrate all the explosions produce carbon dioxide?

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : What are haloalkanes and haloarenes and

    Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl grou

  • Q : Mcq Give me answer of this question.

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Explain vapour pressure of liquid

    Liquid solutions are obtained when the solvent is liquid. The solute can be a gas, liquid or a solid. In this section we will discuss the liquid solutions containing solid or liquid solutes. In such solutions the solute may or may not be volatile. We shall limit our d

  • Q : Explain the polymers and its types.

    Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walk

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi

  • Q : Procedure for separating the components

    Briefly describe the procedure for separating the components of the gun-powder?

  • Q : Extensive property Choose the right

    Choose the right answer from following. Which one of the following is an extensive property: (a) Molar volume (b) Molarity (c) Number of moles (d) Mole fraction