--%>

What is Ideal Mixtures

Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases.

Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or solution, can be obtained by beginning with Dalton's law of partial pressures. That law, as seen in the pressure needed to confine a mixture of gases to a container is equal to the sum of the pressures that would be needed to confine the gas components separately to the same container.

The formation of Dalton's law binary mixture can be pictured by the process suggested in the fig. we begin with the gas sample containing of the separate components, each at pressure P. the mixing process consists of the expansion of each component to fill the entire container.

Suppose there are two containers nA mol of A and nB mol of B. the gas sample, both before and after mixing, has a volume V, and pressure to confine the gas to this volume is P. before mixing, the components are both occupy the total volume, and the pressures, or partial pressures, needed to confine them are also proportion to the number of moles. The relations that are implied are shown in fig.

The exponent of each component in this ideal gas mixture process occurs without regard to the presence of the other component. The change that occurs in the mixing is the sum of the changes experienced by each component.

From the relation between free energy and pressure for an ideal gas so that we have:

GA (in mixture) - GA (pure) = nRT in xB

G(in mixture) - GB (pure) = nRT in xB  


Ideal solutions: the free energy result of the above equation was developed by piecing together features of ideal behavior. In a more elegant procedure, adherence to the equation and to the consequences of this equation is used as the definition of ideal solution behavior. The entropy and free energy changes for the formation of 1 mol of an ideal gas solution are shown in the fig. and along with enthalpy it is accurate. Gas mixtures, except a high pressures or low temperatures, confirm to these ideal mixture characteristics. In what follows we treat gas mixtures as ideal.

Liquid mixtures, i.e. solutions, generally do not; behave according to these ideal mixing expressions. The volume of the solution is not always equal to the sum of the volume of the separate components. In the formation of a solution energy must often be exchanged with the thermal surroundings to maintain a constant temperature. Only for a few solutions are the free energy and entropy changes given by the ideal solution expressions. 

Entropy and free energy change at 25°C for formation of 1 mol of an ideal binary solution:

Mole fraction (xA) Mole fraction (xB) xA R In xA, Jk-1mol-1 xB R In xB, Jk-1mol-1 ΔSmix, JK-1mol-1 T ΔSmix, J mol-1 ΔGmix, J mol-1
1 0 0 0 0 0 -0
0.9 0.1 -0.79 -1.91 2.70 805 -805
0.8 0.2 -1.48 -2.68 4.16 1240 -1240
0.7 0.3 -2.08 -3.00 5.08 1510 -1510
0.6 0.4 -2.55 -3.05 5.60 1670 -1670
0.5 0.5 -2.88 -2.88 5.76 1720 -1720
0.4 0.6 -3.05 -2.55 5.60 1670 -1670
0.3 0.7 -3.00 -2.08 5.08 1510 -1510
0.2 0.8 -2.68 -1.48 4.16 1240 -1240
0.1 0.9 -1.91 -0.79 2.70 805 -805
0 0 0 0 0 0 -0

   Related Questions in Chemistry

  • Q : Law of multiple proportions and Law of

    Describe the difference between law of multiple proportions and law of definite proportions?

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Means of molality Give me answer of

    Give me answer of this question. The number of moles of solute per kg of a solvent is called its: (a) Molarity (b) Normality (c) Molar fraction (d) Molality

  • Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Number of electrons in the benzene

    Describe the number of electrons in the benzene? Write a short note on it?

  • Q : Problem on Redlich-Kwong equation i)

    i) Welcome to Beaver Gas Co.! Your first task is to calculate the annual gross sales of our superpure-grade nitrogen and oxygen gases. a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298

  • Q : Determining of normality of sodium

    Can someone please help me in getting through this problem. The normality of a solution of sodium hydroxide 100 ml of which includes 4 grams of NaOH is: (a) 0.1 (b) 40 (c) 1.0 (d) 0.4