--%>

What is Ideal Mixtures

Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases.

Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or solution, can be obtained by beginning with Dalton's law of partial pressures. That law, as seen in the pressure needed to confine a mixture of gases to a container is equal to the sum of the pressures that would be needed to confine the gas components separately to the same container.

The formation of Dalton's law binary mixture can be pictured by the process suggested in the fig. we begin with the gas sample containing of the separate components, each at pressure P. the mixing process consists of the expansion of each component to fill the entire container.

Suppose there are two containers nA mol of A and nB mol of B. the gas sample, both before and after mixing, has a volume V, and pressure to confine the gas to this volume is P. before mixing, the components are both occupy the total volume, and the pressures, or partial pressures, needed to confine them are also proportion to the number of moles. The relations that are implied are shown in fig.

The exponent of each component in this ideal gas mixture process occurs without regard to the presence of the other component. The change that occurs in the mixing is the sum of the changes experienced by each component.

From the relation between free energy and pressure for an ideal gas so that we have:

GA (in mixture) - GA (pure) = nRT in xB

G(in mixture) - GB (pure) = nRT in xB  


Ideal solutions: the free energy result of the above equation was developed by piecing together features of ideal behavior. In a more elegant procedure, adherence to the equation and to the consequences of this equation is used as the definition of ideal solution behavior. The entropy and free energy changes for the formation of 1 mol of an ideal gas solution are shown in the fig. and along with enthalpy it is accurate. Gas mixtures, except a high pressures or low temperatures, confirm to these ideal mixture characteristics. In what follows we treat gas mixtures as ideal.

Liquid mixtures, i.e. solutions, generally do not; behave according to these ideal mixing expressions. The volume of the solution is not always equal to the sum of the volume of the separate components. In the formation of a solution energy must often be exchanged with the thermal surroundings to maintain a constant temperature. Only for a few solutions are the free energy and entropy changes given by the ideal solution expressions. 

Entropy and free energy change at 25°C for formation of 1 mol of an ideal binary solution:

Mole fraction (xA) Mole fraction (xB) xA R In xA, Jk-1mol-1 xB R In xB, Jk-1mol-1 ΔSmix, JK-1mol-1 T ΔSmix, J mol-1 ΔGmix, J mol-1
1 0 0 0 0 0 -0
0.9 0.1 -0.79 -1.91 2.70 805 -805
0.8 0.2 -1.48 -2.68 4.16 1240 -1240
0.7 0.3 -2.08 -3.00 5.08 1510 -1510
0.6 0.4 -2.55 -3.05 5.60 1670 -1670
0.5 0.5 -2.88 -2.88 5.76 1720 -1720
0.4 0.6 -3.05 -2.55 5.60 1670 -1670
0.3 0.7 -3.00 -2.08 5.08 1510 -1510
0.2 0.8 -2.68 -1.48 4.16 1240 -1240
0.1 0.9 -1.91 -0.79 2.70 805 -805
0 0 0 0 0 0 -0

   Related Questions in Chemistry

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : Henry law question Answer the following

    Answer the following qustion. The definition “The mass of a gas dissolved in a particular mass of a solvent at any temperature is proportional to the pressure of gas over the solvent” is: (i) Dalton’s Law of Parti

  • Q : Basic concept Give me answer of this

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Problem on reversible and irreversible

    The second law states that  dS ≥ (dQ/T), where dS = dQ/T for a reversible process and dS > dQ/T for an irreversible process.   a. Show that since dW12 = -dW21 (dWreverse = -dWforward) for a r

  • Q : Meaning of Molar solution Molar

    Molar solution signifies 1 mole of solute present/existed in: (i) 1000g of solvent (ii) 1 litre of solvent (iii) 1 litre of solution (iv) 1000g of solution

  • Q : How alkyl group reactions takes place?

    Halogenations: ethers react with chlorine and bromine to give substitution products. The extent of halogenations depends upon the conditions of reacti

  • Q : Anti-aromatic and the non-aromatic

    What is main difference among anti-aromatic and the non-aromatic compounds?

  • Q : Question based on relative lowering of

    Give me answer of this question. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to: (a) Mole fraction of solute (b) Mole fraction of solvent (c) Concentration of the solute in grams per litre (d) Concentratio

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M