Explain Vapour Pressure Composition

A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.

Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pressure of a solution of given composition but also the composition of the vapor that is in equilibrium with the liquid. This additional information can be put on the vapor-pressure composition diagrams.

Since the partial pressures of gas components are proportional to the number of moles of gases per unit volume, the mole fractions of the vapor can be written

2070_Vapour pressure.png    

for an ideal solution Raoult's law is obeyed and

PA = xAA and PB = xBB

Thus for an ideal solution the vapor composition is given by

2188_Vapour pressure1.png 

this expression can be used to calculate the compositions of vapor in equilibrium with an ideal solution of any composition. The qualitative result is that the vapor will be relatively richer in A ifA is greater than B, that is, if A is the more volatile component.

The vapor-composition information is added to the vapor pressure composition diagram by allowing the abscissa to be used for both liquid and vapor compositions, as illustrated for ideal solution. at a particular vapor pressure one can read, along the horizontal dashed line, for example, the composition of the liquid that gives rise to this vapor pressure and also the composition of the vapor that exists in equilibrium with this liquid. More often one uses the diagram by starting with a given liquid composition, a reading off the vapor pressure of this solution and obtaining the composition b of the vapor in equilibrium with the solution.

For nonideal solutions, the composition of the vapor in equilibrium with a given solution must be calculated from equation and the experimentally determined vapor pressures of the two components. The vapor pressures of the two components of representative nonideal solutions were shown. The vapor compositions over an acetone chloroform solution containing a chloroform mole fraction of 0.2 can be calculated as an example. At this concentration, the vapor pressure of chloroform is, 0.046 bar, and that of acetone is 0.355 bar. The total vapor pressure is 0.401 bars. The mole fraction of chloroform in the vapor is 0.046/0.401 = 0.115; that of acetone is0.885. such data can be used to add the vapor composition curves.

It is helpful to notice and remember that on vapor pressure composition diagrams (both for ideal and any type of nonideal system) the liquid composition curve always lies above the vapor composition curve. Where the curve for the vapor pressure of the liquid shows a maximum or minimum, however the equilibrium vapor has the same composition as the liquid. Such points will be important when a separation process is considered.

The diagrams show the phase or phases present at any pressure at the specified temperature. Consider, for example, a point in the lower region of any of these figures. The pressure is lower than the vapor-pressure curves, and the system exists as a vapor. As the pressure is increased, the point describing the system moves up until it reaches the vapor-composition line. The vapor is then in equilibrium with liquid of the composition given by the liquid composition curve at that pressure. Attempts to increase the pressure will produce more liquid. In general, the liquid composition will be different from that of the vapor. When this process is complete the system is represented by a point on the upper liquid composition curve. Further pressure increases merely increase the pressure on the liquid. It follows from this discussion that the three regions can be labeled "vapor", "vapor and liquid", and "liquid".

   Related Questions in Chemistry

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Volumes of solution after concentration

    Hydrochloric acid solution A and B encompass concentration of 0.5N and 0.1N  corresspondingly. The volumes of solutions A and B needed to make 2liters of 0.2N of HCL are: (i) 0.5l of A + 1.5l of B (ii) 1.5l of A + 0.5 l of B  (iii) 1.0 l of A + 1.0l of B&nbs

  • Q : Determining of normality of sodium

    Can someone please help me in getting through this problem. The normality of a solution of sodium hydroxide 100 ml of which includes 4 grams of NaOH is: (a) 0.1 (b) 40 (c) 1.0 (d) 0.4

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Problem on reversible process a. For a

    a. For a reversible process involving ideal gases in a closed system, Illustrate thatΔS = Cv ln(T2/T1) for a constant volume process ΔS = Cp ln(T2/T1) for a constant pressu

  • Q : What is laser and explain its working?

    Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the

  • Q : Solutions The relative lowering of

    The relative lowering of vapour pressure of 0.2 molal solution in which solvent is benzene

©TutorsGlobe All rights reserved 2022-2023.