--%>

What is heat capacity and how to calculate heat capacity

The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure.


The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the temperature. To make full use of the thermodynamic date we developed, we must see how these data are extended to temperatures other than 25°C.

Heat capacities; it is convenient to deal separately constant pressure processes when the temperature is raised and the energy of the system increases. The heat capacity, already introduced and experimentally determined, as the decrease in the energy of the thermal surroundings that provides the energy to increase the temperature of the system by 1°C, under the specified conditions. Thus we define

1966_heat capacity.png 

And 

68_heat capacity1.png 

If you think of an actual measurement, you see that to increase the temperature of the system, i.e. for ΔT to be positive, there will be a decrease in the energy of the thermal surroundings, that is, ΔUtherm will be negative. The definitions are then being seen to make heat capacities positive quantities.

Heat capacities at constant pressure CP will be used more than will heat capacities at constant volume CV. Some values for CP are given for a temperature of 25°C. All these values for liquids and solids come from experimental, calorimetric studies that depend on the defining equation. Some of the values for gases are experimental, and others are based on calculations of the type of physical properties.

Heat capacities can be used to extend the 25°C thermodynamic quantities to other temperatures. To do so, we will need heat capacity values over a range of temperatures. An analytical expression, rather than a table of values, is needed for most of the calculations we will do. The two empirical CP versus T expressions that have been most used are

CP = a' + b't + c'T2 + ....

And, CP = a + bT + cT-2 + ...

The second of these two forms is more satisfactory. The coefficients that have been deduced for this equation are given for a few substances.

Heat capacities and internal energies and enthalpies: heat capacities, defined in terms of energy changes in the thermal surroundings, can be expressed in terms energy changes in the system.

If any ordinary chemical process occurs and the system has a constant volume ΔUmech = 0 and ΔU = -ΔUtherm, we can express CV as

2156_heat capacity2.png 

If the system is maintained at a constant pressure, ΔH = - ΔUtherm. We can express CP as

190_heat capacity3.png 

Heat capacities in J K-1 mol-1 at constant pressure (parameters for the equation C°P = (a + bT + cT-2):

327_heat capacity4.png 

Heat capacities are characteristics of the system. They are directly linked to the way the internal energy and enthalpy change with temperature when the volume or pressure of the system is correctly controlled.

   Related Questions in Chemistry

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : Describe Enzyme Catalyzed reactions

    Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system. Many rate equations that are more complex than first and se

  • Q : Problem on volumetric flow rate Methane

    Methane containing 4 mol% N2 is flowing through a pipeline at 105.1 kpa and 22 °C. To check this flow rate, N2 at the same temperature and pressure are introduced to the pipeline at the rate of 2.83 m3/min. At the end of the pipe (

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M

  • Q : Benzoic acid is weaker than paranitro

    Briefly state that Benzoic acid is weaker than paranitro benzoic acid?

  • Q : Volume hydrogen peroxide Choose the

    Choose the right answer from following. The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : Wavelengths which the human eye can see

    Briefly state the wavelengths which the human eye can see?

  • Q : Raoults law Give me answer of this

    Give me answer of this question. Provide solution of this question. Which one of the following is the expression of Raoult's law: (a) P-P1/P = n/n+N (b) P1-P/P = N/ N+n (c)P-P2/P1= N/ N-n (d) P1-P/P2= N-n/N

  • Q : Molarity of pure water Choose the right

    Choose the right answer from following. The molarity of pure water is: (a) 55.6 (b) 5.56 (c)100 (d)18