What is heat capacity and how to calculate heat capacity

The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure.


The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the temperature. To make full use of the thermodynamic date we developed, we must see how these data are extended to temperatures other than 25°C.

Heat capacities; it is convenient to deal separately constant pressure processes when the temperature is raised and the energy of the system increases. The heat capacity, already introduced and experimentally determined, as the decrease in the energy of the thermal surroundings that provides the energy to increase the temperature of the system by 1°C, under the specified conditions. Thus we define

1966_heat capacity.png 

And 

68_heat capacity1.png 

If you think of an actual measurement, you see that to increase the temperature of the system, i.e. for ΔT to be positive, there will be a decrease in the energy of the thermal surroundings, that is, ΔUtherm will be negative. The definitions are then being seen to make heat capacities positive quantities.

Heat capacities at constant pressure CP will be used more than will heat capacities at constant volume CV. Some values for CP are given for a temperature of 25°C. All these values for liquids and solids come from experimental, calorimetric studies that depend on the defining equation. Some of the values for gases are experimental, and others are based on calculations of the type of physical properties.

Heat capacities can be used to extend the 25°C thermodynamic quantities to other temperatures. To do so, we will need heat capacity values over a range of temperatures. An analytical expression, rather than a table of values, is needed for most of the calculations we will do. The two empirical CP versus T expressions that have been most used are

CP = a' + b't + c'T2 + ....

And, CP = a + bT + cT-2 + ...

The second of these two forms is more satisfactory. The coefficients that have been deduced for this equation are given for a few substances.

Heat capacities and internal energies and enthalpies: heat capacities, defined in terms of energy changes in the thermal surroundings, can be expressed in terms energy changes in the system.

If any ordinary chemical process occurs and the system has a constant volume ΔUmech = 0 and ΔU = -ΔUtherm, we can express CV as

2156_heat capacity2.png 

If the system is maintained at a constant pressure, ΔH = - ΔUtherm. We can express CP as

190_heat capacity3.png 

Heat capacities in J K-1 mol-1 at constant pressure (parameters for the equation C°P = (a + bT + cT-2):

327_heat capacity4.png 

Heat capacities are characteristics of the system. They are directly linked to the way the internal energy and enthalpy change with temperature when the volume or pressure of the system is correctly controlled.

   Related Questions in Chemistry

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Law of multiple proportions and Law of

    Describe the difference between law of multiple proportions and law of definite proportions?

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Questuion associated with colligative

    Provide solution of this question. Which of the following is a colligative property: (a) Surface tension (b) Viscosity (c) Osmotic pressure (d) Optical rotation

  • Q : Molarity Give me answer of this

    Give me answer of this question. If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is:(a) 0.1M (b) 0.2M (c)0.3M (d)0.4M

  • Q : Relative reactivity Which is more

    Which is more reactive towards nucleophilic substitution aryl halide or vinyl halides

  • Q : Determining maximum Osmotic pressure

    Which of the following would have the maximum osmotic pressure (assume that all salts are 90% dissociated): (a) Decimolar aluminium sulphate (b) Decimolar barium chloride (c) Decimolar sodium sulphate (d) A solution obtained by mix

  • Q : Excel assignment I want it before 8 am

    I want it before 8 am tomorow please. I am just wondering how much is going to be ?

  • Q : Define alum Illustrate alum?

    Illustrate alum?

  • Q : Vapour pressure over mercury Choose the

    Choose the right answer from following. At 300 K, when a solute is added to a solvent its vapour pressure over the mercury reduces from 50 mm to 45 mm. The value of mole fraction of solute will be: (a)0.005 (b)0.010 (c)0.100 (d)0.900

©TutorsGlobe All rights reserved 2022-2023.