--%>

Explain Phase Rule

The relation between the number of phases, components and the degrees of freedom is known as the phase rule.

One constituent systems: the identification of an area on a P-versus-T with one phase of a component system illustrates the two degrees of freedom that exist, these usually being specified as pressure and temperature.

For a two phase system, the requirement of equality in the molar free energies of the two phases imposes a relation, such as dP/dT = ?S/?V, and thus the pressure and temperature cannot both be arbitrary varied. A two phase component system thus has a single degree of freedom, as shown by the identification of a line on a P-versus-T diagram with two phases in equilibrium.

Finally, for three phases to coexist, the molar energy of the first pair would have to be equal that of the additional phase. One molar restrictive equation then exists, and thus the last degree of freedom is entirely removed. No arbitrary assignment of variable can be made; the system is entirely self determined. The one component P-versus-T diagram feature for three phase is a point.

All this can be assumed by the equation:

= 3 - P [one component]

Multi component systems: rules similar to the above equation can be deduced for systems of more than one component. It is possible, however, to proceed more generally and to obtain the phase rule, which gives the number of degrees of freedom of a system with C components and P phases, this rule was first obtained by J. Willard Gibbs in 1878, but it was published in rather obscure Transactions of the Connecticut Academy and overlooked for 20 years.

Consider the two components to be published in the rather obscure Transaction of the Connecticut academy and overlooked the degrees of freedom of the system can be calculated by first adding the total number of intensive variables required to describe separately each problem and subtracting these variables, whose values are fixed by free energy equilibrium relations between the different phases. To begin, each component is assumed to be present in every phase.

In each phase C - 1 quantity will be define the composition of the phase quantitatively. Thus, if mole fraction are used to measure the concentrations, one needs to be specify the mole fraction of the components, the remaining one being determined because the sum of P (C - 1) such composition variables. In addition the pressure and the temperature if the system is considered phase by phase is denoted by the main composition of phase rule.

The number of degrees of freedom, i.e. of net arbitrary adjustable intensive variables, is therefore:

= P(C - 1) + 2 - (P - 1) = C - P + 2

If a component is not present or is present to a negligible extent in one of the phases of the system, there will be one fewer intensive variable for that phase since the neglible concentration of the species is is of no interest. There will also be one fewer equilibrium relation. The phase rule applies, therefore, to all systems regardless of whether all phases have the same number of components.

The phase rule is an significant generalization. Although it tells us nothing that could not be deduced in any given system, it is a valuable guide for unraveling phase equilibrium in more complex systems.

   Related Questions in Chemistry

  • Q : Molecular crystals Among the below

    Among the below shown which crystal will be soft and have low melting point: (a) Covalent  (b) Ionic  (c) Metallic  (d) MolecularAnswer: (d) Molecular crystals are soft and have low melting point.

  • Q : Calculate PH value for a acetic acid 1.

    1. A solution of 0.100 M acetic acid is prepared. a) What is its pH value? b) If 20% of the initial acetic acid is converted to the acetate form by titration with NaOH, what is the resultant pH?

  • Q : Problem on convection coefficient An

    An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel casting involves insertion of thermocouples in the casting at distances of 10 mm and 20 mm from the surface.  When the experiment was perform

  • Q : Functions of centrioles Describe

    Describe briefly the functions of centrioles?

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : What is laser and explain its working?

    Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the

  • Q : Determining of normality of sodium

    Can someone please help me in getting through this problem. The normality of a solution of sodium hydroxide 100 ml of which includes 4 grams of NaOH is: (a) 0.1 (b) 40 (c) 1.0 (d) 0.4

  • Q : Problem on Adiabatic expansion

    Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and

  • Q : Solution density of water is 1g/mL.The

    density of water is 1g/mL.The concentration of water in mol/litre is