- +1-530-264-8006
- info@tutorsglobe.com

18,76,764

Questions

Asked

21,311

Experts

9,67,568

Questions

Answered

Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

Submit Assignment2015 © Tutors Globe. All rights reserved.

## Solving Systems of Equations

Solving Systems of Equations:Previously, we have been dealing with just one equation at a time. But now, we will work with more than one variable and more than one equation. These are termed as systems of equations. Whenever answering a system of equations, you require giving the value for each and every variable.

:Solving Systems of Linear EquationsThere are six ways that we can utilize to solve a system of the linear equations:

Graphically:

Substitution:

Addition/Elimination:

Gaussian Elimination/Gauss Jordan Elimination:

Cramer's Rule:

Matrix Algebra/Matrix Inverses:

:SubstitutionThe technique of substitution will work with non-linear and also linear equations.

a) Solve one of the equations for one of variables.

b) Replace that expression in for the variable in other equation.

c) Solve the equation for the residual variable.

d) Back-substitute the value for variable to determine the other variable.

e) Check.

The procedure of back-substitution includes taking the value of variable found in step c and replacing it back to the expression obtained in step a (or the original problem) to find out the remaining variable.

It is significant that both the variables be given whenever solving a system of equations. The common mistake students make is to find out one variable and stop there. You need to comprise a value for all variables.

This is a good idea to ensure your answer to the both equations, however is probably adequate to check the equation you did not isolate the variable in first step. That is, when you solved for y in the first equation in step a, employ the second equation to ensure the answer.

Graphical Approach:The graphical approach works fine with a graphing calculator, however is imprecise by hand (did such points intersect at 1/6 or 1/7?) unless the graph occurs to drop exactly on grid lines.

a) Solve each of equation for y. This might include a plus and minus when there is an y

^{2}term. When you are not graphing with a computer or calculator, you can skip this step.b) Graph each and every equation.

c) Find out the points of intersection.

d) Check.

It is significant to check your answers to make sure that you read the intersection point properly.

Sometimes the calculator will fail to provide an intersection point by using the intersect command. You might need to use the trace characteristic of the calculator to determine the intersection point. You might use your calculator to ensure the answer.

Try to transform your answer to fractional form when possible.

The graphical approach can keep a lot of time whenever you are working with the non-linear system of equations.

Latest technology based Algebra Online Tutoring AssistanceTutors, at the

www.tutorsglobe.com, take pledge to provide full satisfaction and assurance inAlgebra helpviaonline tutoring. Students are getting 100% satisfaction byonline tutorsacross the globe. Here you can get homework help for Algebra, project ideas and tutorials. We provide email basedAlgebra help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Algebra. ThroughOnline Tutoring, you would be able to complete your homework or assignments at your home. Tutors at theTutorsGlobeare committed to provide the best qualityonline tutoringassistance forAlgebra Homework helpandassignment helpservices. They use their experience, as they have solved thousands of the Algebra assignments, which may help you to solve your complex issues of Algebra.TutorsGlobeassure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide thehomework helpas per the deadline or given instruction by the student, we refund the money of the student without any delay.