--%>

Donnan Membrane Equilibria

The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.

Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allowing passage of small ions or solvent in or out compartment. Much of the transport occurring in cells and cell compartments in living systems can be similarly described. In all such cases, the equilibrium state that would be reached as a result of the net transport of the small ions can be markedly affected if the macromolecule carries a charge, as is generally the case.

Except at the isoionic pH, proteins and nucleic acids carry a charge as a result of a net gain or loss of protons. Additional charges are acquired by the binding of other species, e.g. the binding of Mg2+ ions by phosphate groups. Thus, macromolecules in laboratory or biological systems generally carry a charge. The overall electrical neutrality of the solution results from a corresponding opposite charge contributed by ions, called counterions, included in the remaining ionic make up of the solution.

Suppose such a macromolecule or, specifically, a protein solution is separated from pure water by a semipermeable membrane that allows passage of small ions but prohibits the passage of protein molecules. Such a situation could arise in an osmotic pressure study or in the dialysis of the protein solution. Suppose the protein carries a net negative charge and that Na+ ions are the counterions. The Na+ ions will tend to diffuse to the low concentration region of initially pure water. Electrical neutrality would be lost and this process prevented if it were not for the dissociation of water. This occurs, and H+ ions tend to accumulate on the proteins side of the membrane while the corresponding OH- ions accumulate, along with the buffered, pH charges will occur to upper the osmotic pressure or dialysis experiment.

In such ways are led to deal with the equilibrium between protein solutions, which are often themselves buffered, and buffer solutions. The complication arise can be illustrated by considering the simplest situation of the protein-sodium-ion solution separated by a semipermeable membrane from a sodium chloride solution.

Suppose the proteins species P carries a negative charge of -z. the neutrality of the solution is achieved by the presence of z positive charges, Na+ ions for example, for each protein concentration is cP, as the initial Na+ concentration in the protein compartment is zeP.

Species concentration in a Donnan-membrane equilibrium study:

368_donnan membrane.png 



Rearrangement leads to x, the concentration of chloride that develops in the protein compartment:

At large salt concentrations, the effect of the protein is overwhelmed and x = 1/2cs. The two compartments achieve equal salt concentrations. At large a protein concentration, however, the passage of salt into the protein compartment is prevented, even though this rejection of the chloride ion by a solution that contains none of that ion.

Donnan-membrane equilibrium calculated from the above equation for z = 1:

2230_donnan membrane1.png 

The effects of various concentrations of protein and electrolyte are shown in the table. Only at high concentration relative to the protein concentration is the effect of the confined charged protein small. Therefore many studies of proteins or other polyelectrolytes in solution are made at high electrolyte concentration and at a pH near the isoionic point.  

   Related Questions in Chemistry

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Problem based on mole concept Choose

    Choose the right answer from following. An aqueous solution of glucose is 10% in strength. The volume in which mole of it is dissolved will be : (a) 18 litre (b) 9 litre (c) 0.9 litre (d) 1.8 litre

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Vapour pressure related question Help

    Help me to solve this question. Which of the following is incorrect: (a) Relative lowering of vapour pressure is independent (b)The vapour pressure is a colligative property (c)Vapour pressure of a solution is lower than the vapour pressure of the solvent (d)The

  • Q : Molar mass lculwhat is the equation for

    lculwhat is the equation for caating molar mass of non volatile solute

  • Q : How much phosphorus is in superphosphate

    Superphosphate has the formulate: CaH4 (PO4)2 H2O calculate the percentage of Phosphorus in this chemical. Show your calculations

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : How can enzymes act as catalyst?

    Enzymes are complex proteinous substances, produced by living bodies, such as act as catalysis in the physiological reactions. The enzymes are, also called biochemical catalysts and the phenomenon is known as bio-chemical catalysis because numerous reactions that occur the bodies of animals and p

  • Q : Problem on Adiabatic expansion

    Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and

  • Q : Vapour pressure of methanol in water

    Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water