--%>

Donnan Membrane Equilibria

The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.

Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allowing passage of small ions or solvent in or out compartment. Much of the transport occurring in cells and cell compartments in living systems can be similarly described. In all such cases, the equilibrium state that would be reached as a result of the net transport of the small ions can be markedly affected if the macromolecule carries a charge, as is generally the case.

Except at the isoionic pH, proteins and nucleic acids carry a charge as a result of a net gain or loss of protons. Additional charges are acquired by the binding of other species, e.g. the binding of Mg2+ ions by phosphate groups. Thus, macromolecules in laboratory or biological systems generally carry a charge. The overall electrical neutrality of the solution results from a corresponding opposite charge contributed by ions, called counterions, included in the remaining ionic make up of the solution.

Suppose such a macromolecule or, specifically, a protein solution is separated from pure water by a semipermeable membrane that allows passage of small ions but prohibits the passage of protein molecules. Such a situation could arise in an osmotic pressure study or in the dialysis of the protein solution. Suppose the protein carries a net negative charge and that Na+ ions are the counterions. The Na+ ions will tend to diffuse to the low concentration region of initially pure water. Electrical neutrality would be lost and this process prevented if it were not for the dissociation of water. This occurs, and H+ ions tend to accumulate on the proteins side of the membrane while the corresponding OH- ions accumulate, along with the buffered, pH charges will occur to upper the osmotic pressure or dialysis experiment.

In such ways are led to deal with the equilibrium between protein solutions, which are often themselves buffered, and buffer solutions. The complication arise can be illustrated by considering the simplest situation of the protein-sodium-ion solution separated by a semipermeable membrane from a sodium chloride solution.

Suppose the proteins species P carries a negative charge of -z. the neutrality of the solution is achieved by the presence of z positive charges, Na+ ions for example, for each protein concentration is cP, as the initial Na+ concentration in the protein compartment is zeP.

Species concentration in a Donnan-membrane equilibrium study:

368_donnan membrane.png 



Rearrangement leads to x, the concentration of chloride that develops in the protein compartment:

At large salt concentrations, the effect of the protein is overwhelmed and x = 1/2cs. The two compartments achieve equal salt concentrations. At large a protein concentration, however, the passage of salt into the protein compartment is prevented, even though this rejection of the chloride ion by a solution that contains none of that ion.

Donnan-membrane equilibrium calculated from the above equation for z = 1:

2230_donnan membrane1.png 

The effects of various concentrations of protein and electrolyte are shown in the table. Only at high concentration relative to the protein concentration is the effect of the confined charged protein small. Therefore many studies of proteins or other polyelectrolytes in solution are made at high electrolyte concentration and at a pH near the isoionic point.  

   Related Questions in Chemistry

  • Q : Reactivity of allyl and benzyl halides

    why allyl halide and haloarenes are more reactive than alkyl halide towards nucleophilic substitution

  • Q : Define Bond Energies - Bond Charges

    Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds. Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce,

  • Q : Molarity based question Help me to

    Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

  • Q : Question based on vapour pressure While

    While a substance is dissolved in a solvent, the vapour pressure of the solvent is decreased. This results in: (a) An increase in the boiling point of the solution (b) A decrease in the boiling point of solvent (c) The solution having a higher freezing point than

  • Q : Effect of addition of mercuric iodide

    Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are

  • Q : Decision about dipole moment is present

    How can you decide if there is a dipole moment or not?

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Amines why o-toluidine is a weaker base

    why o-toluidine is a weaker base than aniline?

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1