--%>

Describe Transformation Matrices.

Each symmetry operation can be represented by a transformation matrix.

You have seen what happens when a molecule is subjected to the symmetry operation that corresponds to any of the symmetry elements of the point group to which the molecule belongs. The molecule is simply transformed into itself. But the properties of the molecule in which we are interested are not necessarily so simply affected.

All properties, or motions, of a molecule, obtained perhaps as eigenfunctions of the corresponding operator, are related to the symmetry of the molecule. Let us illustrate this by exploring how the overall translational and rotational motions of any C2molecule, the H2O molecule for example, change when the various symmetry operations of the C2v group are applied.

Let the overall translational motions of the H2O molecules be represented by the x, y, and zvectors. Some of the symmetry operations, those of the E and σ'v symmetry elements, leave x unchanged. Others, those of the C2 and the σv symmetry elements, change the direction, or sign of x. If the new translational vectors are indicated by  primes, you can see that the effects of the symmetry operations on, for example, x are given by the set of +1, -1, +1, -1 and the effect onby the set of entries +1, -1, +1, -1.

Now let us see how the rotations of the molecule about the x, y, and z axe are affected by the symmetry operations. We can do so by drawing curly arrows to represent the motions that constitute these rotations. Inspection of the effect of the symmetry operations shows that the same as two of those found when we used the vectors that represent translational motions as our basis. The effect on Rz, as illustrated and leads to a new, fourth set of +1 and -1 terms.

The four different types of symmetry behaviour that have been discovered are collected in each row represents a symmetry species. Each symmetry species is given an identifying label. We use the axis of rotation, i.e. a species for species that is symmetric with respect to the axis of rotation, i.e. a species for which +1 is the entry under the symbol for the rotation operation. We use the symbol B to indicate a symmetric species that is antisymmetric, and has a -1 entry, for this rotation operation. Here we use an additional subscript labels, choosing the subscript 1 for the more symmetric species and 2 for the less symmetric species.

The H2O molecule, or the C2v, point group, provides a simple, and special, example. In this case the translation and rotation vectors can be chosen so that the symmetry operations change each vector into itself or into its opposite. The effect of the operations change each vector into itself or into opposite. The effect of the operations on each of these vectors is represented by a +1 ora -1. The symmetry species of the C2point group consists of sets containing +1 and -1 terms.

Transformation matrices: for some point groups the basis vectors that we use to study the effects of the symmetry operations become mixed as a result of these operations. Consider the three overall translation vectors of the NH3 molecule of the C3v point group. These and the symmetry elements of this group are nothing new enters when we consider the effects of the symmetry operations on the z vector. This vector is unchanged by each and every symmetry operation. Thus a set of +1 is shows how the z translation vector is transformed.

Now consider the effect of a C3v rotation, i.e. rotation by 1/3 revolution on the x and y vectors. The results have now the new position of x, that is, the vector of x' is related to the original vectors by

x' = -1/2x - √3/2y

The new vector y' that is produced from the original vector y is given by

y' = +√3/2x - 1/2y

The net effect of the operation C2 on the set of vectors x and y can be shown by the matrix equation

x'    -1/2  - √3/2   x

y'     √3/2   -1/2    y    

   Related Questions in Chemistry

  • Q : Some basic concepts of chemistry an

    an atom of an element is 10.1 times heavier than the mass of a carbon atom.What is its mass in amu?

  • Q : Problem on reversible process a. For a

    a. For a reversible process involving ideal gases in a closed system, Illustrate thatΔS = Cv ln(T2/T1) for a constant volume process ΔS = Cp ln(T2/T1) for a constant pressu

  • Q : Problem on molarity-normality-molality

    Can someone please help me in getting through this problem. The solution ofAl2(SO4)3 d = 1.253gm/m comprise 22% salt by weight. The molarity, normality and molality of the solution is: (1) 0.805 M, 4.83 N, 0.825 M (2)

  • Q : Molal elevation constant of water The

    The boiling point of 0.1 molal aqueous solution of urea is 100.18oC  at 1 atm. The molal elevation constant of water is: (a) 1.8    (b) 0.18   (c) 18    (d) 18.6Answer: (a) Kb

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Distribution law Help me to go through

    Help me to go through this problem. The distribution law is applied for the distribution of basic acid between : (a) Water and ethyl alcohol (b) Water and amyl alcohol (c) Water and sulphuric acid (d) Water and liquor ammonia

  • Q : Question 6 A student was analyzing an

    A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the stu

  • Q : PH of an Alkyl Halide Briefly state the

    Briefly state the pH of an Alkyl Halide?

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Molar concentration of hydrogen 20 g of

    20 g of hydrogen is present in 5 litre of vessel. Determine he molar concentration of hydrogen: (a) 4  (b) 1 (c) 3 (d) 2 Choose the right answer from above.