Introduction:
There are numerous types of waves in nature, like sound, light, heat, electromagnetic waves, mechanical waves etc. Such waves are either transverse or longitudinal. Movement of wave from one point to another with respect to time is termed as propagation.
Plane waves refer to waves whose wavefront are parallel to each other. Plane electromagnetic wave that is polarized would have electric field vector oscillating in specific direction and Magnetic field (B) oscillating perpendicularly to it. Direction of propagation is then normal to both directions of E and B. If E and B vectors oscillate randomly {with both perpendicular to each other} electromagnetic wave is said to be unpolarised or randomly polarized. The electromagnetic wave can be linearly polarized (E vector oscillating in straight line) or circularly polarized (E vector oscillating or circular path) or elliptically polarized {E vector oscillating in elliptical path). Isotropic medium is medium having similar property in all direction. Unbounded isotropic medium is thus unconfined medium having similar properties in all direction. Simple example is free space.
Propagation of plane wave in unbounded isotropic media:
The wave may be considered as plane wave far away from its source of radiation. This applies to wavefronts of different shapes. Wavefronts of the plane wave are parallel to each other. It is essential to state that line normal to wavefronts or planes is known as a ray. The ray signifies direction of propagation.
There are several kinds of waves like sound wave, hydromagnetic wave, electromagnetic wave etc. Their properties comprise (i) transfer of energy from one place to another. (ii) Exhibition of diffraction effect and (iii) obeying principle of superposition.
Electromagnetic wave which is produced by accelerated charged particles. In neighborhood of electric charge is electric field, E. As charge moves (oscillates), both electric field and magnetic field exist in neighborhood. The electromagnetic wave is then propagated. Electromagnetic wave exists because of variation in electric field with time, generating magnetic field (i.e. at high frequency) and varying magnetic field generating electric field (faraday's law) that process is repeated constantly.
The electric field, E, is represented by
E = uxE0exp[jw(t - z/v)]
This equation implies that E oscillates along x-axis whereas wave propagates along z-axis. Velocity of wave, v = w/k, where w is angular frequency and k is wave number. In free space, v = 2.998 × 108ms-1 (to 3 d.p). Eo is amplitude or peak value of varying electric field. Magnetic field, B that oscillates along y-axis is represented by
B = uyB0exp[jw(t - z/v)]
Where Bo is amplitude or peak value of magnetic field. Polarized plane wave has its field of oscillation changing with time in the specified direction while for unpolarized plane wave the direction of oscillation of field change randomly with time. Specified direction of oscillation of field could be rectilinear, circular or elliptical in which case rectilinear, circular and elliptical polarization result. Circular polarization of plane wave will be represented by
E = uxE0exp[jw(t - z/v)]+uyE0exp[jw(t - z/v + p/2)]
This is because for circular polarization two components of equal amplitude should be perpendicular and have phase difference of p/2 between them. If amplitude of components are unequal elliptical polarization results.
The relationship between the electric field, E, and the magnetic field, B, is obtained from Faraday's law as follows.
Using differential form of Faraday's law i.e.
∇xE = -dB/dt
or
uydEx/dz -uz(dEx/dy)= -dB/dt
As simple case of Ex constant in x-y plane is considered, d/dy = 0
The 2nd term on LHS = 0 as uy(dEx/dy) = 0, thus
-uyj(w/v)E0[jw(t-z/v)]= -dB/dt
Integrating with respect to t provides,
B= uy(1/v)E0exp[jw(t-z/v)]
Comparing equations shows that amplitude, B0, of magnetic field equals E0/ v. Wave equations of electric and magnetic fields of which equations are solutions are attained as follows:
Maxwell's equations in free space in differential form are
∇.E = Ρ/ε0.............................. Eq.i
Where Ρ ≡ charge density and εo ≡ permittivity of free space
∇.B = 0.............................. Eq.ii
∇xE = -dB/dt.............................. Eq.iii
∇xB = ε0μ0(dE/dt) + μ0j.............................. Eq.iv
Where j ≡ conduction current density and μ0 ≡ permeability of free space, (iv) equation is the Ampere's law modified by addition of displacement current, ε0(dE/dt) when electric field differs rapidly.
Outside the region of changing charge and current distribution, Maxwell's equations given above i.e. equations (i) to (iv) becomes
∇xE = 0
∇xB = 0
∇xB = ε0μ0dE/dt
By taking curl of equation i.e. ∇x∇xE = -d/dt(∇xB),
∇x∇xE = ∇(∇.E) - ∇2E
Replacing for ∇x∇xE we have
∇(∇.E)-∇2E = -d/dt(∇xB)
Replacing for ∇.E = 0 from equation and for ∇xB = ε0μ0 (dE/dt) gives
-∇2E = -d/dt(ε0μ0dE/dt) or ∇2E = ε0μ0(d2E/dt2)
∇2E = (1/c2)(d2E/dt2)
Where c = 1/√ε0μ0
By taking curl of ∇x∇xB = ε0μ0(d/dt)(∇xE)
∇(∇.B)-∇2B = -d/dt(∇xE)
Using equations:
-∇2B = -ε0μ0(d2B/dt2) or ∇2B = ε0μ0(d2B/dt2)
∇2B = (1/c2)(d2B/dt2)
∇2E = (1/c2)(d2E/dt2) This is wave equations of electric fields and
∇2B = (1/c2)(d2B/dt2) this is wave equations of magnetic fields.
Propagation of electromagnetic wave in an isotropic medium:
Case 1: Propagation of electromagnetic wave in the isotropic insulating medium.
Assume electromagnetic wave travels in the isotropic insulating medium and that relative permittivity and relative permeability of medium are εr and μr respectively. Equation becomes
∇2E = εμ(d2E/dt2) or ∇2E = (1/v2)(d2E/dt2)
Where ε, permittivity of medium is product of εo and εr i.e. ε = εoεr and μ, permeability of medium is product of μo and μr i.e. μ = μoμr, i.e. the velocity of wave in medium. Equation becomes
∇2B = (1/v2)(d2B/dt2)
√εrμr = c/v
But refractive index, n = c/v thus, n = √εrμr and n is refractive index of medium. Both relative permittivity and relative permeability are known to differ with frequency for dispersive medium implying that refractive index of dispersive medium differs with frequency.
Case II: Propagation of electromagnetic wave in the conducting medium.
For propagation of electromagnetic wave in conducting medium, modified Ampere's law can be written as:
∇xH = jf + dD/dt
Where H - the magnetic intensity - equals B/μoμr (μr being the relative permeability of medium) and D -electric displacement - equals εoεrE (εr being relative permittivity of the medium).
(i) H = B/μoμr in absence of magnetization current and D = εoεrE in absence of polarization charges otherwise H = B/(μoμr)-M, where M = magnetization, vector quantity and D = εoεrE - P (P = polarization, a vector quantity). Equation can be written as:
∇xB/(μoμr) = jf + εoεr(dE/dt)
From ohm's law i.e. I = V/R
Then equation can be written as
∇x(B/μoμr) = σE + εoεr(dE/dt)
By taking curl
∇x∇xE = -d/dt(∇xB)
∇2E = d2E/dz2
This is because electric field, E is constant in x-y plane at fixed z-coordinate its amplitude though decreases exponentially with increase in z. Electrical conductivity σ>>ωεoεr. Thus equation can be written as:
d2E/dz2 = μoμrσ(dE/dt)
Further solving α=β = √μoμrσω/2
Reciprocal of α = √2/μoμrσω is referred to as skin depth, δ and it estimates how rapidly wave is attenuated. Using μr≈1, δ≈√2/μoσω. When ω is high, δ is very small.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com dynamic-innovation-risk theory of profit assignment help-homework help by online theories of profit tutors
hire medieval philosophy assignment help at affordable rates and add a feather to your hat by scoring well!
tutorsglobe.com heterosis assignment help-homework help by online breeding experiments tutors
Camera is a device that is used to capture images (generally photographs), either singly or in sequence, with or with no sound, success along with video cameras.
www.tutorsglobe.com offers preparation of 1º amines homework help, preparation of 1º amines assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
Structure and Composition of the Atmosphere tutorial all along with the key concepts of Properties of the Atmosphere, Vertical Diminution of Density with Height, Isothermal Atmosphere, Adiabatic Atmosphere, Temperature Profile of Adiabatic Atmosphere
tutorsglobe.com use of chromium assignment help-homework help by online occurrence and principles of extraction of chromium tutors
tutorsglobe.com virus assignment help-homework help by online microbiology tutors
online as-a level exam preparation course and online as-a level tutoring package offered by TutorsGlobe are the most comprehensive and customized collection of study resources on the web, offering best collection of as-a level practice papers, quizzes, as-a level test papers, and guidance.
criteria for spontaneity tutorial all along with the key concepts of ternal energy change as a criterion for spontaneity, enthalpy change as a criterion for spontaneity, helmholtz free energy change, gibbs free energy change as a criterion for spontaneity, nernst heat theorem
Negative Feedback tutorial all along with the key concepts of Benefits of Negative Feedback, Gain Stability, Decreased Distortion, Feedback over Several Stages, Forms of Negative Feedback, Shunt-Derived Series-Fed Voltage Feedback, Current-Series Feedback Amplifier
Theory and lecture notes of Chi-square goodness-of-fit test all along with the key concepts of chi-square goodness-of-fit test, Interpreting the Claim. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Chi-square goodness-of-fit test.
Equivalent Impedance Transforms tutorial all along with the key concepts of 3-Element Networks, Equivalent Circuit, Thevenin's equivalent, Extra Element Theorem, Felici's Law and Foster's Reactance Theorem
Drug Bioassay and Sensitivity Tests tutorial all along with the key concepts of Drug Bioassays, Matching bioassays, Interpolation method and Drug Sensitivity Tests
in this type of machine (fully automatic machine) there is only one tub that works as the washer, rinse also the drier.
1933622
Questions Asked
3689
Tutors
1445890
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!