Phases of Matter:
Matter or substance can exist in three familiar phases that is; solid phase, liquid phase, gaseous phase. Matter of some substances can also exist in two less familiar phases that is; super fluid phase, and plasma phase.
Solid Phase: Molecules are arranged in the closely packed form known as crystal. These molecules can only vibrate about their lattice point.
Liquid Phase: Molecules are close together and they take shape of container. Molecules of liquid, inside its volume, can move from place to place, rotate and vibrate.
Gaseous Phase: Molecules are extensively separated and free to move around freely.
Super fluid: The supercritical (or critical) fluid is the liquid/gas under extreme pressure.
Plasma: Plasma is the gas which is made up of free-floating ions and free electrons.
Phase Diagram:
Three regions for three phases are shown in diagram given below. Solid curves or lines symbolize boundary between two phases like fusion curve is boundary between solid phase and liquid phase. These lines are known as equilibrium lines. Implication of this is that under particular conditions of temperature and pressure, a substance can exist in equilibrium in more than one phase at the same time.
Triple Point: This is point where three equilibrium lines meet as indicated in phase diagram given below. At triple point, solid, liquid, and vapor phases of pure substance coexist in equilibrium. All substances have triple point except Helium.
Triple Point Temperature: this is temperature at which solid, liquid, and vapor phases coexist in equilibrium.
Triple Point Pressure: This is pressure at which solid, liquid, and vapor phases coexist in equilibrium.
Critical Point: This defines conditions of temperature and pressure beyond which it is no longer possible to differentiate liquid from the gas. Point is indicated in phase diagram and region beyond critical point is called as fluid region.
Co-exist Phases:
This is when more than one phase of the substance (like liquid-solid) exist side-by-side in equilibrium at same time. For instance, solid water and liquid water can coexist at 00C along procedure of fusion or melting. Gibbs energy (G) for two coexisting phases α and β of the pure substance are equal.
Phase Transitions:
Phase transition takes place when matter changes from one of the phases of matter to another. Process always involves withdrawal or addition of heat energy from or to matter. Using figure given above as illustration, phase transition takes place whenever any one of the curves in phase diagram is crossed. Phase transition for the pure substance takes place at constant temperature and pressure. Implication of this statement is that, for the pure substance dT = dP =0 during the phase change. Though, extensive thermodynamic coordinates or properties (like Volume) change suddenly because of the phase transition. Internal energy (U), enthalpy (H), and entropy (S) may also change during the phase transition.
Latent Heat, L, during Phase Transition:
Latent heat L is an amount of heat energy per mole which should be added or removed when the substance changes from one phase to another. If phase transition occurs reversibly, heat transfer (i.e. latent heat) per mole for transition from initial phase α to the final phase β is provided by
L = T(Sβ - Sα)
Kinds of Phase Transition:
The three kinds of phase transitions are: first order, second order and lambda phase transitions.
First Order Phase Transition:
Phase transitions which are recognizable with i.e. sublimation, vaporization and fusion are known as first order phase transition. They are known as first order as first order derivatives of Gibbs function are finite.
Thus, for first order phase transition:
The specific heat capacity at constant pressure is infinite; this is due to temperature is constant during phase change (CP = T∂S/∂T|P)
Second Order Phase Transition:
This is a phase transition in which second derivates of Gibbs are finite.
For order phase transition,
The only example of second order phase transition is transition for superconductor from superconducting to normal state in zero magnetic fields.
Lambda phase transition:
For lambda phase transition:
The most interesting example of lambda transition is transition from ordinary liquid helium to super fluid helium at a temperature and corresponding pressure known as a lambda point.
Gibbs Function during Phase Transition:
The Gibbs function G doesn't change during phase transition. For coexisting phases,
dG|T,P = 0
I.e. change in Gibbs at constant temperature and pressure is zero.
Two phases (e.g. liquid-gas) can coexist in equilibrium. For coexisting phases α and β of the pure substance
Gα = Gβ = dGα = dGβ
Gibbs function G is provided by equation:
dG = -SdT + VdP
After replacing values we get:
-SαdT + VαdP = -SβdT + VβdP
Rearranging to get:
dP/dT = (Sβ - Sα)/(Vβ - vα)
Further solving we get:
dP/dT = L(T(vβ - Vα))
This equation is called as Clapeyron's equation.
If solid phase is labeled 1, liquid 2, and gas or vapor phase 3, equation can be written as follows:
For solid - vapor phase transition, we have
(dP/dT)13 = L13/(T(V3 - V1))
Where L13 is latent heat of sublimation.
And for solid - liquid phase transition, we get:
(dP/dT)12 = L12/(V2 - V1)
Where L12 is latent heat of fusion
Usefulness of Clapeyron's Equation:
Equation can be integrated to get the expression for pressure as the function of temperature. If following assumptions holds i.e. if variation in latent heat can be negligible, and if one of the phases is vapor, and if vapor is assumed to be the ideal gas, and if specific volume of liquid or solid is neglected in comparison with that of vapor, the integration can be readily performed.
(dP/dT)23 = L23/T(RT/P)
∫dP/P = L23/R∫dT/T2
Then ln P = -L23/RT + ln constant
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
www.tutorsglobe.com offers resonance homework help, resonance assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
www.tutorsglobe.com offers cost benefit analysis homework help, answering questions to cost benefit analysis, cost benefit analysis assignment help, accounting instant tutoring sessions for cost benefit analysis by online tutors.
Theory and lecture notes of Chi-square goodness-of-fit test all along with the key concepts of chi-square goodness-of-fit test, Interpreting the Claim. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Chi-square goodness-of-fit test.
tutorsglobe.com dominant epistasis assignment help-homework help by online types of epistasis tutors
tutorsglobe.com treatment of chlamydia assignment help-homework help by online chlamydia tutors
tutorsglobe.com light microscopy assignment help-homework help by online light and electron microscope tutors
universal serial bus is abbreviated as usb is a specification to establish communication among devices and a host controller (generally personal computers), developed and invented through ajay bhatt when working for intel.
Theory and lecture notes of Axioms of Expected Utility all along with the key concepts of axioms of expected utility, Compound lotteries, continuity, Substitutability, Monotonicity. Tutorsglobe offers homework help, assignment help and tutor’s assistance on axioms of expected utility.
tutorsglobe.com production possibilities assignment help-homework help by online basic economic problems tutors
Tissues-Organs and Systems tutorial all along with the key concepts of Plant Tissues, Meristematic Tissue, Parenchymatous Tissue, Collenchyma Tissue, Xylem, Phloem, Animal Tissues, Organs of plants and animals, Systems, Circulatory System, Digestive System
alkanoic acids tutorial all along with the key concepts of characteristics of alkanoic acids, oxidation of primary alkanols and uses of alkanoic acids
Initialization of Variables and Scope rules comprising the key concepts of Hash define, Hash include, External array, Homework help and Assignment help
Phylum-Chordata tutorial all along with the key concepts of Features of Chordates, Protochordata, features of Vertebrates, categorization of Vertebrates, Developments in Vertebrates, Basic Chordate Body Plan, Adaptations of Fish and Maintenance Systems of fish
Enthalpy changes in different processes and reactions tutorial all along with the key concepts of Hess's law of constant heat summation, Enthalpy changes in different processes and reactions, determination of enthalpy of combustion
Theory and lecture notes of Turing machines and the automata of equal power all along with the key concepts of turing machines and the automata of equal power, Finite Automata with External Storage, queue automaton. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Turing machines and the automata of equal power.
1941989
Questions Asked
3689
Tutors
1488126
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!