Introduction to Bound States:
You would remind that a body in the simple harmonic motion bounces backward and forward between the two points where the total or net mechanical energy, 'E', of the body is equivalent to the potential energy. As the kinetic energy becomes zero, the body should turn back. In just similar manner, a quantum-mechanical oscillator is a particle within an infinite potential well. You must observe that certainly, the solutions will be sinusoidal, just the manner it is by a harmonic oscillator. Such a state is an illustration of a bound state. More particularly, we shall state a system is in the bound state if, E < V (-∞). As such the wave function comprised should die at infinity, that is, Ψ(x) → 0 as x → ± ∞. E > V (- ∞) or/and E > V (+ ∞) is termed as a scattering state. The other manner of seeing a bound state is to state that the particle is subjected to the attracting potential.
For a bound state, the given conditions apply:
a) Ψ is continuous across the boundary
b) The first derivative, Ψ', is continuous across the boundary
Particle in an infinite potential well:
This is as well termed as a particle in a box. The figure shown below describes a particle in an infinite potential well.
The above figure is the infinite square well potential confining a particle to a region having width 'L'.
Within the well, the potential is zero whereas outside the well, the potential is infinite. We anticipate that the wave function outside the well will be equivalent to zero.
We remember the Schrodinger equation: (∂2Ψ/∂x2) + (8π2m/h2) (E - V) Ψ = 0
If, V = 0,
(d2Ψ/dx2) + (8π2m/h2) EΨ = 0
It can be written as:
(d2Ψ/dx2) + k2Ψ = 0
The common solution of this equation is:
Ψ(x) = c1eikx + c2e-ikx
Here c1 and c2 are the constants to be determined, subject to the boundary conditions and i = √-1.
As,
a) Ψ(x) = 0 for x = 0
Ψ(0) = c1eik0 + c2e-ik0 = 0
=> c1 + c2 = 0 => c1 = -c2 = c
=> Ψ(x) = c (eikx - e-ikx) = A sin kx
Here A = 2ic
b) Ψ(x) = 0 for x = L
A sin kL = 0 => kL = nπ, where n = 0, 1, 2,........
It obeys that the values of k are quantized, in such a way that kn = nπ/L
Therefore, the corresponding energy En = (n2h2)/(8mL2), and the wave-function corresponding to this energy is Ψn(x) = An sin (nπx/L).
An, termed as the normalization constant is obtained through applying the normalization condition:
-∞∫∞ |Ψ(x)|2 dx = 1
That is, An2 o∫L sin2 (nπx/L) dx = 1
Or An2 x 1/2 = 1,
From which it follows that,
An = √ (2/L)
We can thus write:
Ψn(x) = √ (2/L) sin (nπx/L) for 0 ≤ x ≤ L; n = 1, 2, 3....
The Finite Potential Well:
In case of a finite potential well, the wave-functions 'spill over' to the area outside the potential well.
Region 1:
x ≤ - L/2, V(x) = Vo, Putting into time independent Schrodinger equation:
The above can be written in the form:
ΨI = Ceαx + De-αx
Though, we can't let an exponentially growing term; so we set D equivalent to zero.
ΨI = Ceαx
Region 2:
- (L/2) ≤ x ≤ (L/2), V(x) = 0, putting it into the time independent Schrodinger equation
ΨII = A sin kx + B cos kx
This comprises of an odd and an even solution.
We at first consider the even solution: ΨII = B cos kx
Region 3:
x ≥ L/2, V(x) = Vo
ΨIII = Feαx + Ge-αx
Though, we can't let an exponentially growing term; therefore we set F equivalent to zero.
ΨIII = Ce-αx
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com normal flora of the body assignment help-homework help by online medical bacteriology tutors
tutorsglobe.com tricarboxylic acid cycle assignment help-homework help by online carbohydrate metabolism tutors
Theory and lecture notes of Systems of Linear Equations in Two Variables all along with the key concepts of Addition or Elimination, Graphical Interpretation of Solutions, nice problems, Regression Model and Linear Regression. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Systems of Linear Equations in Two Variables.
tutorsglobe.com climatic factors assignment help-homework help by online environmental factors tutors
polyurethane tutorial all along with the key concepts of properties of polyurethane, advantages of polyurethane, applications of polymers, usage per application of polymer
Overheads cost audit program - allocation of indirect expenditure over production, sales and allotment is logical and correct.
rc oscillators tutorial all along with the key concepts of phase shift principle,rc or phase shift oscillator, frequency of oscillation, wien bridge oscillator, phase shift principle
www.tutorsglobe.com : theory and concepts of critical path in network analysis, basic scheduling computations, determination of floats and slack times.
tutorsglobe.com digestion in small intestine assignment help-homework help by online carbohydrates tutors
Phylum Aschelminthes tutorial all along with the key concepts of Features of Aschelminthes, Classification of Aschelminthes, Feature of Ascaris Lumbricoides, Structural Adaptation of Ascan Lumbricoides
Theory and lecture notes of Data Description all along with the key concepts of Skewed Distribution, Symmetric Distribution, Midrange, Population Variance, Empirical or Normal Rule, Standard Score or Z-Score and Outlier. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Data Description.
tutorsglobe.com laboratory diagnosis assignment help-homework help by online trypanosomes tutors
other properties of liquids tutorial all along with the key concepts of vaporization, differences between evaporation and boiling, trouton's rule, liquid crystals and liquid crystal phases
tutorsglobe.com proton-potassium pump hypothesis assignment help-homework help by online mechanism of stomatal closing and opening tutors
tutorsglobe.com exogenous antigen processing assignment help-homework help by online carrier tutors
1952915
Questions Asked
3689
Tutors
1477863
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!