--%>

What is Spectroscopy?

This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spectroscopy is the measurement and interpretation of electromagnetic radiation absorbed or emitted when the molecules, atoms, or ions of a sample move from one allowed energy to another. These allowed energies have been used throughout in our interpretation of the thermodynamic properties of materials. Grouped here and in the following are treatments of various experimental methods that give information on the geometry and electronic structures of molecules. The difficulties encountered in the applications of a completely theoretical approach to molecular bonding and structure lead one to refer frequently to experimentally determined properties in order to understand molecular phenomena. Now the origin of the values used there for the spacing of so
e of the energy levels will be seen. Our principal concern is molecular spectroscopy that stems from changes in the rotational, vibrational and the electronic energies. In addition, energies not considered in our thermodynamic studies, resulting from energy differences that arise when a sample is placed in a magnetic or electric field, are susceptible to spectroscopic studies. Nuclear-magnetic-resonance (nmr) spectroscopy and electron-spin-resonance (esr) spectroscopy illustrate such studies. 

   Related Questions in Chemistry

  • Q : Describe Transformation Matrices. Each

    Each symmetry operation can be represented by a transformation matrix.You have seen what happens when a molecule is subjected to the symmetry operation that corresponds to any of the symmetry elements of the point group to which the molecule belongs. The m

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Vapour pressure over mercury Choose the

    Choose the right answer from following. At 300 K, when a solute is added to a solvent its vapour pressure over the mercury reduces from 50 mm to 45 mm. The value of mole fraction of solute will be: (a)0.005 (b)0.010 (c)0.100 (d)0.900

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Relative reactivity Which is more

    Which is more reactive towards nucleophilic substitution aryl halide or vinyl halides

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Neutralisation of phosphorous acids

    Provide solution of this question. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H3 PO3) the volume of 0.1 M aqueous KOH solution required is: (a) 40 mL (b) 20 mL (c) 10 mL (d) 60 mL