What is Spectroscopy?

This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spectroscopy is the measurement and interpretation of electromagnetic radiation absorbed or emitted when the molecules, atoms, or ions of a sample move from one allowed energy to another. These allowed energies have been used throughout in our interpretation of the thermodynamic properties of materials. Grouped here and in the following are treatments of various experimental methods that give information on the geometry and electronic structures of molecules. The difficulties encountered in the applications of a completely theoretical approach to molecular bonding and structure lead one to refer frequently to experimentally determined properties in order to understand molecular phenomena. Now the origin of the values used there for the spacing of so
e of the energy levels will be seen. Our principal concern is molecular spectroscopy that stems from changes in the rotational, vibrational and the electronic energies. In addition, energies not considered in our thermodynamic studies, resulting from energy differences that arise when a sample is placed in a magnetic or electric field, are susceptible to spectroscopic studies. Nuclear-magnetic-resonance (nmr) spectroscopy and electron-spin-resonance (esr) spectroscopy illustrate such studies. 

   Related Questions in Chemistry

  • Q : Vapour pressure of a liquid Help me to

    Help me to go through this problem. The vapour pressure of a liquid depends on: (a) Temperature but not on volume (b) Volume but not on temperature (c) Temperature and volume (d) Neither on temperature nor on volume

  • Q : Explain Ionic Bond with examples. The

    The bonding in ionic molecules can be described with a coulombic attractive term.For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulom

  • Q : HCl polarity Illustrate HCl is polar or

    Illustrate HCl is polar or non-polar?

  • Q : Molecular weight of substance The

    The boiling point of a solution of 0.11 gm of a substance in 15 gm of ether was found to be 0.1oC higher than that of the pure ether. The molecular weight of the substance will be (Kb = 2.16)       (a) 148 &nbs

  • Q : Composition of the vapour Choose the

    Choose the right answer from following. An ideal solution was obtained by mixing methanol and ethanol. If the partial vapour pressure of methanol and ethanol are 2.619KPa and 4.556KPa respectively, the composition of the vapour (in terms of mole fraction) will be: (

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : From where the tin is obtained From

    From where the tin is obtained? Briefly illustrate it.

  • Q : Problem on reversible process a. For a

    a. For a reversible process involving ideal gases in a closed system, Illustrate thatΔS = Cv ln(T2/T1) for a constant volume process ΔS = Cp ln(T2/T1) for a constant pressu

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?

©TutorsGlobe All rights reserved 2022-2023.