--%>

What are biodegradable polymers? Present some examples.

 

These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biodegradable. To make such polymers biodegradable we have to insert certain bonds in the chains so that these can be easily broken by the enzymes. Now when such polymers are buried as waste, microorganisms present in the ground can degrade the polymer.

One of the most excellent methods of making a polymer biodegradable is by introducing hydrolysable ester group into the polymer.

For example if acetal is added to an alkene undergoing radical polymerisation, ester group will be inserted into the polymer.

The weak links in the polymer are susceptible to enzyme catalysed hydrolysis.

Aliphatic polyesters are one of the significant categories of biodegradable polymers. Some other examples of biodegradable polymers are described below:

(i) PHBV (Poly-hydroxybutrate-co- 856_Biodegradable1.png-hydroxy valerate):  it is a copolymer of 3-hydroxy butyric acid and 3-hydroxypentanoic acid.
378_Biodegradable.png 


PHBV is used in orthopaedic devices and controlled drug release. The drug put in PHBV capsule is released after this polymer is degraded by enzymatic action. It can also be degraded by bacterial action.

(ii) Poly glycolic acid and poly lactic acid: these are also biodegradable polymers and are used for post operative stitches. These are bioabsorbable structures.

(iii) Nylon-2-Nylon: it is an alternating polyamide copolymer of glycine2233_Biodegradable3.png  and amino caproic acid1005_Biodegradable4.png and is biodegradable.

907_Biodegradable2.png

 

 

 

 

 

   Related Questions in Chemistry

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Problem on solutions The 2N aqueous

    The 2N aqueous solution of H2S04 contains: (a) 49 gm of H2S04 per litre of solution (b) 4.9 gm of H2S04 per litre of solution (c) 98 gm of H2S04

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : What is Henry law constant and its

    1. The units of Henry Law constant are same as those of pressure, i.e. torr or h bar. 2. Different gases have dissimilar values of Henry law constant. The values of KH for some gases in water are given in tabl

  • Q : Describe characteristics of halides and

    Halides characteristics

  • Q : Mole fraction of hydrogen Give me

    Give me answer of this question. In a mixture of 1 gm H2 and 8 gm O2 , the mole fraction of hydrogen is: (a) 0.667 (b) 0.5 (c) 0.33 (d) None of these

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is