--%>

What are biodegradable polymers? Present some examples.

 

These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biodegradable. To make such polymers biodegradable we have to insert certain bonds in the chains so that these can be easily broken by the enzymes. Now when such polymers are buried as waste, microorganisms present in the ground can degrade the polymer.

One of the most excellent methods of making a polymer biodegradable is by introducing hydrolysable ester group into the polymer.

For example if acetal is added to an alkene undergoing radical polymerisation, ester group will be inserted into the polymer.

The weak links in the polymer are susceptible to enzyme catalysed hydrolysis.

Aliphatic polyesters are one of the significant categories of biodegradable polymers. Some other examples of biodegradable polymers are described below:

(i) PHBV (Poly-hydroxybutrate-co- 856_Biodegradable1.png-hydroxy valerate):  it is a copolymer of 3-hydroxy butyric acid and 3-hydroxypentanoic acid.
378_Biodegradable.png 


PHBV is used in orthopaedic devices and controlled drug release. The drug put in PHBV capsule is released after this polymer is degraded by enzymatic action. It can also be degraded by bacterial action.

(ii) Poly glycolic acid and poly lactic acid: these are also biodegradable polymers and are used for post operative stitches. These are bioabsorbable structures.

(iii) Nylon-2-Nylon: it is an alternating polyamide copolymer of glycine2233_Biodegradable3.png  and amino caproic acid1005_Biodegradable4.png and is biodegradable.

907_Biodegradable2.png

 

 

 

 

 

   Related Questions in Chemistry

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Symmetry Elements The symmetry of the

    The symmetry of the molecules can be described in terms of electrons of symmetry and the corresponding symmetry operations.Clearly some molecules, like H2O and CH4, are symmetric. Now w

  • Q : Maximum vapour pressure Provide

    Provide solution of this question. Which solution will show the maximum vapour pressure at 300 K: (a)1MC12H22O11 (b)1M CH3 COOH (c) 1MNacl2 (d)1MNACl

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : Problem on molality Select the right

    Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05

  • Q : Question based on normality Provide

    Provide solution of this question. A 5 molar solution of H2SO4 is diluted from 1 litre to 10 litres. What is the normality of the solution : (a) 0.25 N (b) 1 N (c) 2 N (d) 7 N

  • Q : Group Cations Explain how dissolving

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents

  • Q : Relative lowering of vapour pressure

    explain the process of relative lowering of vapour pressure

  • Q : Concentration of Sodium chloride

    Provide solution of this question. If 25 ml of 0.25 M NaCl solution is diluted with water to a volume of 500ml the new concentration of the solution is : (a) 0.167 M (b) 0.0125 M (c) 0.833 M (d) 0.0167 M