--%>

Simulate the column in HYSYS

The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study).

100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the mixture bubble point and the vapour leaving the column is condensed but not cooled and provides reflux and product.

The separation required is 90% of the maximum achievable separation in terms of top product molar composition. It is required to find the number of plates required and the feed plate position.

Part 1:

1.1. Determine an appropriate thermodynamic model for your binary system using the experimental data given Perry's Chemical Engineers' Handbook . (You may want to try more than one option)

 

Part 2:

2.1. Simulate the column in HYSYS using a short cut distillation approach.

2.2. Simulate the column in HYSYS using a stage-to-stage model.

 

For each case you are required to state the number of stages and the position of the feed as well as the top and bottom compositions.

You will need to discuss the differences between the two approaches as well as the differences between the results produced by the two approaches. You will also be required to discuss the effect of varying different parameters of your choice.

Part 3:

For storage purposes, the bottom product of the stage to stage column needs to be cooled to 30oC using a shell and tube heat exchanger. Cooling water is available at 15oC.

3.1. Simulate the heat exchanger in HYSYS.

3.2. Simulate the heat exchanger in EXCEL.

 

Your Excel spreadsheet should be understandable and user friendly. Make use of the comment boxes and/or text to comment on the construction, calculations and use of your spreadsheet.

Your HYSYS simulation should allow you to check the effect of varying:

? LMTD through the inclusion and exclusion of the correction factor.

? Varying the Tube Bundle in sensible ways and drawing sensible conclusions.

? Do some simulations on the appropriate shell sizes.

? Vary any other parameter that you can sensibly and meaningfully simulate

 

As per the exercise done in class, your spreadsheet should be capable of

? Doing the ENERGY BALANCE

? Calculating a LMTD

? Inserting an external correction factor for the LMTD

? Calculating a value of UA for the exchanger.

? Calculating a surface area for a stated size of Tube Bundle

? Making adjustments as required to the values of A and hence U.

 

Both your EXCEL Spreadsheet and the HYSYS simulation should allow you to make recommendations as to which heat exchanger conditions to use.

You will need to discuss any differences between the two sets of results.

Your report

You are asked to produce a report addressing all the points outlined above and support your report with the EXCEL and HYSYS files as appropriate.

Although this is an open ended exercise, your report should be kept concise and not more than 15 pages.

If necessary and appropriate, use tables, graphs and diagrams to illustrate your answer. Include any detailed calculations in appendices.

It is not necessary to show your general knowledge of distillation, heat exchangers or process simulation - please keep it specific to solving this particular problem. However, you need to include a brief explanation of how the models have been developed making sure to address all the key points.

Ethanol-benzene

   Related Questions in Chemistry

  • Q : Mcq Give me answer of this question.

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Precipitation problem On passing H 2 S 

    On passing H2S  gas through a solution of Cu+ and Zn+2 ions, CuS is precipitated first because: (i) Solubility product of CuS is equal to the ionic product of ZnS (ii) Solubility product of CuS is equal to the solubility product o

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Vapour pressure related question Help

    Help me to solve this question. Which of the following is incorrect: (a) Relative lowering of vapour pressure is independent (b)The vapour pressure is a colligative property (c)Vapour pressure of a solution is lower than the vapour pressure of the solvent (d)The

  • Q : Explain equilibrium and molecular

    The equilibrium constant can be treated as a particular type of molecular distribution. Consider the simplest gas-phase reaction, one in which molecules of A are converted to molecules of B. the reaction, described by the equation

    Q : Donnan Membrane Equilibria The electric

    The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allo

  • Q : Explain Ionic Bond with examples. The

    The bonding in ionic molecules can be described with a coulombic attractive term.For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulom

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?