Simulate the column in HYSYS

The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study).

100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the mixture bubble point and the vapour leaving the column is condensed but not cooled and provides reflux and product.

The separation required is 90% of the maximum achievable separation in terms of top product molar composition. It is required to find the number of plates required and the feed plate position.

Part 1:

1.1. Determine an appropriate thermodynamic model for your binary system using the experimental data given Perry's Chemical Engineers' Handbook . (You may want to try more than one option)

 

Part 2:

2.1. Simulate the column in HYSYS using a short cut distillation approach.

2.2. Simulate the column in HYSYS using a stage-to-stage model.

 

For each case you are required to state the number of stages and the position of the feed as well as the top and bottom compositions.

You will need to discuss the differences between the two approaches as well as the differences between the results produced by the two approaches. You will also be required to discuss the effect of varying different parameters of your choice.

Part 3:

For storage purposes, the bottom product of the stage to stage column needs to be cooled to 30oC using a shell and tube heat exchanger. Cooling water is available at 15oC.

3.1. Simulate the heat exchanger in HYSYS.

3.2. Simulate the heat exchanger in EXCEL.

 

Your Excel spreadsheet should be understandable and user friendly. Make use of the comment boxes and/or text to comment on the construction, calculations and use of your spreadsheet.

Your HYSYS simulation should allow you to check the effect of varying:

? LMTD through the inclusion and exclusion of the correction factor.

? Varying the Tube Bundle in sensible ways and drawing sensible conclusions.

? Do some simulations on the appropriate shell sizes.

? Vary any other parameter that you can sensibly and meaningfully simulate

 

As per the exercise done in class, your spreadsheet should be capable of

? Doing the ENERGY BALANCE

? Calculating a LMTD

? Inserting an external correction factor for the LMTD

? Calculating a value of UA for the exchanger.

? Calculating a surface area for a stated size of Tube Bundle

? Making adjustments as required to the values of A and hence U.

 

Both your EXCEL Spreadsheet and the HYSYS simulation should allow you to make recommendations as to which heat exchanger conditions to use.

You will need to discuss any differences between the two sets of results.

Your report

You are asked to produce a report addressing all the points outlined above and support your report with the EXCEL and HYSYS files as appropriate.

Although this is an open ended exercise, your report should be kept concise and not more than 15 pages.

If necessary and appropriate, use tables, graphs and diagrams to illustrate your answer. Include any detailed calculations in appendices.

It is not necessary to show your general knowledge of distillation, heat exchangers or process simulation - please keep it specific to solving this particular problem. However, you need to include a brief explanation of how the models have been developed making sure to address all the key points.

Ethanol-benzene

   Related Questions in Chemistry

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : What do you mean by the term hydra What

    What do you mean by the term hydra? Briefly define it.

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?

  • Q : Molar concentration Choose the right

    Choose the right answer from following. Molar concentration (M) of any solution : a) No. of moles of solute/Volume of solution in litre (b) No. of gram equivalent of solute / volume of solution in litre (c) No. of moles os solute/ Mass of solvent in kg  (

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Molecular Properties Symmetry Molecular

    Molecular orbitals and molecular motions belong to certain symmetry species of the point group of the molecule.Examples of the special ways in which vectors or functions can be affected by symmetry operations are illustrated here. All wave functions soluti

  • Q : Question based on lowering of vapour

    Choose the right answer from following. The relative lowering of vapour pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be:  (a) 18.0 (b) 342 (c) 60 (d) 180

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

©TutorsGlobe All rights reserved 2022-2023.