--%>

Problem on Redlich-Kwong equation

i) Welcome to Beaver Gas Co.! Your first task is to calculate the annual gross sales of our superpure-grade nitrogen and oxygen gases.

a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be 43 L, the pressure to be 12,400 kPa, and the cost to be $6.I/kg. Compare your result to that you would obtain using the ideal gas model.

b) Repeat for 30,000 units of O2 at 15,000 kPa and $9/kg.

ii) Use the Redlich-Kwong equation to calculate the size of vessel you would need to contain 30 kg of acetylene mixed with 50 kg of n-butane at 30 bar and 450 K. The binary interaction coefficient is given by k12 = 0.092.

E

Expert

Verified

(i)

(a) The amount in kg, of superpure grade N2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (12400)(43x10-3)(273)/((298)(101)(22.4)) = 0.22 kmol

m = Mn = 28 x 0.22 = 6.16 kg.

Hence according to Ideal gas law, there'll be 6.16 kg per unit of superpure-grade N2.

And the annual gross sales will be $ 6.1 x 6.16 x 30000 = $1127280 = $1.13 million

(b) The amount in kg, of superpure grade O2, per container is calculated below,

PV = nRT

n = PVT1/(TP1V1/n1)) ... where suffix 1 indicates conditions at STP.

n = (15000)(43x10-3)(273)/((298)(101)(22.4)) = 0.27 kmol

m = Mn = 32 x 0.27 = 8.64 kg.

Hence according to Ideal gas law, there'll be 8.64 kg per unit of superpure-grade O2.

And the annual gross sales will be $ 9 x 8.64 x 30000 = $ 2332800 = $2.33 million

(ii)

The following data is obtained from Internet.

Acetylene

MW 26 g/mol
Pc 61.91 bar
Tc 35.1 oC

n-butane

MW 58.12
Pc   38 bar
T  425 K

The total amount of mixture in kmol = 30/26 + 50/58.12 = 2.01

x1 = mole fraction of acetylene = (30/26)/2.01 = 0.57

x2 = mole fraction of n-butane = 0.43

Redlich-Kwong parameters (Note that P is in kPa and T is in K)

acetylene:

a1 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(308.2)2.5/6273 = 7846
b1 = 0.0866RTc/Pc = 0.0866(8.314)(308.2)/6273 = 0.0354

n-butane:

a2 = 0.427R2Tc2.5/Pc = 0.427(8.314)2(425)2.5/3850 = 28547

b2 = 0.0866RTc/Pc = 0.0866(8.314)(425)/3850 = 0.0795

Using the following mixing rules, we'll find a and b for the binary mixture.

aij = (1 – kij)ai1/2aj1/2  and a = ΣΣxixjaij  ; b = Σxib  ......(1)

a12 = a21 = (1 – 0.092)(7846)1/2(28547)1/2 = 13589

a11 = a1; and a22 = a2.

Now using equation (1)

a = (0.57)(0.57)(7846) + (0.57)(0.43)(13589) + (0.43)(0.43) (28547) + (0.43)(0.57)(13589) = 14489

b = 0.57x0.0354 + 0.43x0.0795 = 0.054

The Redlich Kwong equation,

P = {RT/(Vm – b)} - {a/(T1/2Vm(Vm+b))}

Use the given values,

P = 30 bar = 3030.75 kPa

T = 450 K

After rearraning the Redlich-Kwong equation we get a cubic polynomial in Vm.
64483Vm3 – 79465Vm2 – 4479Vm – 782 = 0

We obtain the roots using MATLAB's roots function,

1.29
-0.0305 + 0.0919i
-0.0305 - 0.0919i

Hence the volume of the vessel is Vm x No of moles,
= 1.29 x 2.01 = 2.6 m3 = 2600 lit.

   Related Questions in Chemistry

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Help 1) Chromium(III) hydroxide is

    1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving t

  • Q : Problem based on molality of glucose

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : Crystals of covalent compounds Crystals

    Crystals of the covalent compounds always contain:(i) Atoms as their structural units  (ii) Molecules as structural units  (iii) Ions held altogether by electrostatic forces (iv) High melting pointsAnswer: (i)

  • Q : Dipole moment Elaborate a dipole moment

    Elaborate a dipole moment?

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa