--%>

Molecular Diameters

The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values are obtained from second viral coefficient data. Fitting values for the empirical constants are derived from van der Waal's equation. Some b values obtained in this way are given in table.


So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is v

The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecule diameter d. the volume excluded to the pair of molecules is 4/3πd3. We thus obtain,

= 4[4/3π (d/2)]3

The expression in brackets is the volume of a molecule.vander Waal's b term is the excluded volume per mole of the molecules. Thus we have, with N representing Avogadro's number,

B= 4n [4/3π (d/2)3] = 4N (vol. of molecule)

Molecular size and Lennard Jones intermolecular Attraction term based on second virial coefficient data:

Gas Excluded volume B, L mol-1 Molecular diam. D, pm ELJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22


Van der Waal's equation and the Boyle temperature:

Gas Tboyle, K Tboyle/TC
H2 110 3.5
He 23 4.5
CH4 510 2.7
NH3 860 2.1
N2 330 2.6
O2 410 2.7


Example: calculate the radius of the molecule from the value of 0.069 L mol-1 for the excluded volume b that is obtained from the second virial coefficient data.

Solution: the volume of 1 mol of methane molecules is obtained by dividing the b value of 0.069 L mol-1 = 69 × 10-6 m3 mol-1 value by 4. Then division by Avogadro's number gives the volume per molecule. We have:

Volume of methane molecule = 69 × 10-6 m3/4 × 6.022 × 1023 

= 2.86 × 10-29 m
3

The volume is equal to 4/3∏r3 and on this basis we calculate:

r = 1.90 × 10-10 m and d = 3.80 × 10-10 m = 380 pm

   Related Questions in Chemistry

  • Q : Cons of eating organic foods Illustrate

    Illustrate the cons of eating organic foods?

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.

  • Q : Explain Solid Compound Formation. In

    In some two component, solid liquid systems, a solid compound forms.In systems in which the components have an interaction for such other, a solid state compound of the two compounds of the two components can form.Formic acid and formaide form a solid state, one-to-one com

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : Problem on equilibrium constant Ethanol

    Ethanol is manufactured from carbon monoxide and hydrogen at 600 K and 20 bars according to the reaction2 C0(g) + 4 H2(g) ↔ C2H5OH(g) + H2O (g)The feed stream contains 60 mol% H2, 20 m

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : Chem Explain how dissolving the Group

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.