Molecular Diameters

The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values are obtained from second viral coefficient data. Fitting values for the empirical constants are derived from van der Waal's equation. Some b values obtained in this way are given in table.

So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is v

The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecule diameter d. the volume excluded to the pair of molecules is 4/3πd3. We thus obtain,

= 4[4/3π (d/2)]3

The expression in brackets is the volume of a molecule.vander Waal's b term is the excluded volume per mole of the molecules. Thus we have, with N representing Avogadro's number,

B= 4n [4/3π (d/2)3] = 4N (vol. of molecule)

Molecular size and Lennard Jones intermolecular Attraction term based on second virial coefficient data:

Gas Excluded volume B, L mol-1 Molecular diam. D, pm ELJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22

Van der Waal's equation and the Boyle temperature:

Gas Tboyle, K Tboyle/TC
H2 110 3.5
He 23 4.5
CH4 510 2.7
NH3 860 2.1
N2 330 2.6
O2 410 2.7

Example: calculate the radius of the molecule from the value of 0.069 L mol-1 for the excluded volume b that is obtained from the second virial coefficient data.

Solution: the volume of 1 mol of methane molecules is obtained by dividing the b value of 0.069 L mol-1 = 69 × 10-6 m3 mol-1 value by 4. Then division by Avogadro's number gives the volume per molecule. We have:

Volume of methane molecule = 69 × 10-6 m3/4 × 6.022 × 1023 

= 2.86 × 10-29 m

The volume is equal to 4/3∏r3 and on this basis we calculate:

r = 1.90 × 10-10 m and d = 3.80 × 10-10 m = 380 pm

   Related Questions in Chemistry

  • Q : Gibberella fusarium in bioremediation

    in bioremediation gibberella fusarium is used to break down____?

  • Q : Vander Waals forces Wax is an example

    Wax is an example of: (a) Ionic crystal  (b) Covalent crystal  (c) Metallic crystal  (d) Molecular crystalAnswer: (d) Iodine crystals are molecular crystals, in which constituent particles are molecules having inter particle

  • Q : Molarity of solution Help me to go

    Help me to go through this problem. When 7.1gm Na2SO4 (molecular mass 142) dissolves in 100ml H2O , the molarity of the solution is: (a) 2.0 M (b) 1.0 M (c) 0.5 M (d) 0.05 M

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Entropy is entropy on moleculare basis

    is entropy on moleculare basis relates to the tras.,vib.,and rotational motions?

  • Q : Basic concepts Determination of correct

    Determination of correct mol. Mass from Roult's law is applicable to :

  • Q : What is Distillation Separation by

    Separation by distillation can be described with a boiling point diagram. The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composit

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi

©TutorsGlobe All rights reserved 2022-2023.