--%>

Molecular Diameters

The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values are obtained from second viral coefficient data. Fitting values for the empirical constants are derived from van der Waal's equation. Some b values obtained in this way are given in table.


So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is v

The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecule diameter d. the volume excluded to the pair of molecules is 4/3πd3. We thus obtain,

= 4[4/3π (d/2)]3

The expression in brackets is the volume of a molecule.vander Waal's b term is the excluded volume per mole of the molecules. Thus we have, with N representing Avogadro's number,

B= 4n [4/3π (d/2)3] = 4N (vol. of molecule)

Molecular size and Lennard Jones intermolecular Attraction term based on second virial coefficient data:

Gas Excluded volume B, L mol-1 Molecular diam. D, pm ELJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22


Van der Waal's equation and the Boyle temperature:

Gas Tboyle, K Tboyle/TC
H2 110 3.5
He 23 4.5
CH4 510 2.7
NH3 860 2.1
N2 330 2.6
O2 410 2.7


Example: calculate the radius of the molecule from the value of 0.069 L mol-1 for the excluded volume b that is obtained from the second virial coefficient data.

Solution: the volume of 1 mol of methane molecules is obtained by dividing the b value of 0.069 L mol-1 = 69 × 10-6 m3 mol-1 value by 4. Then division by Avogadro's number gives the volume per molecule. We have:

Volume of methane molecule = 69 × 10-6 m3/4 × 6.022 × 1023 

= 2.86 × 10-29 m
3

The volume is equal to 4/3∏r3 and on this basis we calculate:

r = 1.90 × 10-10 m and d = 3.80 × 10-10 m = 380 pm

   Related Questions in Chemistry

  • Q : What do you mean by the term hydra What

    What do you mean by the term hydra? Briefly define it.

  • Q : Liquid Vapour Free Energies The free

    The free energy of a component of a liquid solution is equal to its free energy in the equilibrium vapour.Partial molal free energies let us deal with the free energy of the components of a solution. We use these free energies, or simpler concentration ter

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : What are the various types of drugs

    Drugs are broadly classified into following types depending on the purpose for which they are used. 1. Antipyretics

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace

  • Q : Molar conductance what is the molar

    what is the molar conductance of chloropentaamminecobalt(III) chloride?

  • Q : Explain Solid Compound Formation. In

    In some two component, solid liquid systems, a solid compound forms.In systems in which the components have an interaction for such other, a solid state compound of the two compounds of the two components can form.Formic acid and formaide form a solid state, one-to-one com

  • Q : Problem on moles of solution The number

    The number of moles of a solute in its solution is 20 and total no. of moles are 80. The mole fraction of solute wil be: (a) 2.5 (b) 0.25 (c) 1 (d) 0.75

  • Q : Questuion associated with colligative

    Provide solution of this question. Which of the following is a colligative property: (a) Surface tension (b) Viscosity (c) Osmotic pressure (d) Optical rotation

  • Q : Problem on Neutralization What weight

    What weight of hydrated oxalic acid should be added for complete neutralisation of 100 ml of 0.2N - NaOH solution? (a) 0.45 g  (b)0.90 g  (c) 1.08 g  (d) 1.26 g      Answer