--%>

Explain the mechanism of Enzyme Reactions.

A mechanism for enzyme-catalyzed reactions that leads to the typical rate equation for these reactions can be described.

A variety of rate equations are required to portray the rates of enzymes catalyzed reagents and physical conditions that are encountered. The rate equation of however, is a guide to many of these variations, and the mechanisms of this section, often called the Michaelis-Menten mechanism, is likewise a base for other variations.

The mechanism that accounts for the rate equation is similar to those dealt in with.

With S representing substrate, E the enzyme, and E. S and enzyme substrate complex, the mechanism is presumed to be adequately represented by 

E + S 376_Enzyme reactions.png E. S

E. S 376_Enzyme reactions.png E + products

The steady state assumption, which, however, is not always clearly applicable in these reactions, leads to

k1[E][S] = k-1[E. S] + k2[E. S]

And [E. S] = k1/k-1 + k2 [E][S]


To bring these expressions to a form that can be compared with the empirical rate equation, we must recognize that only [Etot] = [E] + [E. S], and not [E], is generally known. Often, in fact, only a quantity proportional to [Etot], and not even values of [Etot], is available.

Replacement of [E] in equation by [E] = [Etot] - [E. S] leads to

[E. S] = k1[Etot][S]/(k-1 + k2) + k1[S]

Now this expression for the intermediate E. S can be inserted into the expression for the rate of the net reaction. This rate can be based on the formation of products in the second mechanism step. We have

-d[S]/dt = R = k2[E. S] = k1k2[Etot][S]/k-1 + k2 + k1[S]

= k2[Etot][S]/k-1 + k2)/k1 + [S]

It is customary for the term (k-1 + k2)/k1 to be obtained by the new symbol KM, that is,

KM = k-1 + k2/k1 to give the rate equation result of this mechanism as

R = k2[Etot][S]/KM + [S]


We have come at this stage to the form of the empirical rate equation obtained, we are now in a position to intercept the values of the parameters KM and k2[Etotin terms of their roles in the roles in the steps of the mechanism.

Reference to equation shows that, as the reaction is proceeding

[E][S]/[E. S] = KM

Thus KM is related to species concentrations, as is the dissociation equilibrium constant for the species [E. S]. the value of KM, however, is given by (k...1 + k2)/k1, and this equal to the value of the dissociation constant for [E. S] only to the extent that k2 is small and can be neglected compared with k...1. Thus when the breakup of the E. S complex to form original E and S species dominates the process whereby the complex forms products, the value of KM approaches the dissociation constant for the E. S complex.

What, now, is the significance of the term k2[Etot]? One first notes that the rate of the overall reaction is

R = k2[E. S]

It follows that k2[Etot] is the rate that the reaction would have if all the enzyme were in the form of the enzyme-substrate complex. Thus k2[Etot] is the maximum rate for a given value of [Etot]. The turnover rate of an enzyme in a particular enzyme-catalyzed reaction is the rate per mole of enzyme, i.e. the turnover rate is equal to the value of k2, and this can be calculated fromk2[Etot] if the total enzyme concentration is known.

   Related Questions in Chemistry

  • Q : Hybridization Atomic orbitals can be

    Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules. Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive a

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Decinormal concentration of Sulfuric

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : Precipitation Addition of conc. HCl to

    Addition of conc. HCl to saturated Bacl2 solution precipitates Bacl2 ; because of the following reason : (a) It follows from Le Chatelier's principle (b) Of common-ion effect (c) Ionic product (Ba++)(cl) remains constant in a saturated sol

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n

  • Q : Mole fraction of hydrogen Give me

    Give me answer of this question. In a mixture of 1 gm H2 and 8 gm O2 , the mole fraction of hydrogen is: (a) 0.667 (b) 0.5 (c) 0.33 (d) None of these

  • Q : Einsteins mass energy relation In

    In Einstein’s mass energy relation e = mc2 for what is c employed or why is light needed for the reactions. As the reactions are with the help of neutrons?

  • Q : Problem on making solution Select the

    Select the right answer of the question. The weight of H2C2O42H2O required to prepare 500ml of 0.2N solution is : (a) 126g (b) 12.6g (c) 63g (d) 6.3g