--%>

Explain the mechanism of Enzyme Reactions.

A mechanism for enzyme-catalyzed reactions that leads to the typical rate equation for these reactions can be described.

A variety of rate equations are required to portray the rates of enzymes catalyzed reagents and physical conditions that are encountered. The rate equation of however, is a guide to many of these variations, and the mechanisms of this section, often called the Michaelis-Menten mechanism, is likewise a base for other variations.

The mechanism that accounts for the rate equation is similar to those dealt in with.

With S representing substrate, E the enzyme, and E. S and enzyme substrate complex, the mechanism is presumed to be adequately represented by 

E + S 376_Enzyme reactions.png E. S

E. S 376_Enzyme reactions.png E + products

The steady state assumption, which, however, is not always clearly applicable in these reactions, leads to

k1[E][S] = k-1[E. S] + k2[E. S]

And [E. S] = k1/k-1 + k2 [E][S]


To bring these expressions to a form that can be compared with the empirical rate equation, we must recognize that only [Etot] = [E] + [E. S], and not [E], is generally known. Often, in fact, only a quantity proportional to [Etot], and not even values of [Etot], is available.

Replacement of [E] in equation by [E] = [Etot] - [E. S] leads to

[E. S] = k1[Etot][S]/(k-1 + k2) + k1[S]

Now this expression for the intermediate E. S can be inserted into the expression for the rate of the net reaction. This rate can be based on the formation of products in the second mechanism step. We have

-d[S]/dt = R = k2[E. S] = k1k2[Etot][S]/k-1 + k2 + k1[S]

= k2[Etot][S]/k-1 + k2)/k1 + [S]

It is customary for the term (k-1 + k2)/k1 to be obtained by the new symbol KM, that is,

KM = k-1 + k2/k1 to give the rate equation result of this mechanism as

R = k2[Etot][S]/KM + [S]


We have come at this stage to the form of the empirical rate equation obtained, we are now in a position to intercept the values of the parameters KM and k2[Etotin terms of their roles in the roles in the steps of the mechanism.

Reference to equation shows that, as the reaction is proceeding

[E][S]/[E. S] = KM

Thus KM is related to species concentrations, as is the dissociation equilibrium constant for the species [E. S]. the value of KM, however, is given by (k...1 + k2)/k1, and this equal to the value of the dissociation constant for [E. S] only to the extent that k2 is small and can be neglected compared with k...1. Thus when the breakup of the E. S complex to form original E and S species dominates the process whereby the complex forms products, the value of KM approaches the dissociation constant for the E. S complex.

What, now, is the significance of the term k2[Etot]? One first notes that the rate of the overall reaction is

R = k2[E. S]

It follows that k2[Etot] is the rate that the reaction would have if all the enzyme were in the form of the enzyme-substrate complex. Thus k2[Etot] is the maximum rate for a given value of [Etot]. The turnover rate of an enzyme in a particular enzyme-catalyzed reaction is the rate per mole of enzyme, i.e. the turnover rate is equal to the value of k2, and this can be calculated fromk2[Etot] if the total enzyme concentration is known.

   Related Questions in Chemistry

  • Q : Direction of dipole moment expected

    Illustrate the direction of the dipole moment expected for hydrogen bromide?

  • Q : Mole fraction of Carbon dioxide Choose

    Choose the right answer from following. If we take 44g of CO2 and 14g of N2 what will be mole fraction of CO2 in the mixture: (a) 1/5 (b) 1/3 (c) 2/3 (d) 1/4

  • Q : Explain the mechanism of Enzyme

    A mechanism for enzyme-catalyzed reactions that leads to the typical rate equation for these reactions can be described.A variety of rate equations are required to portray the rates of enzymes catalyzed reagents and physical conditions that are encountered

  • Q : Donnan Membrane Equilibria The electric

    The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allo

  • Q : Explain the process of adsorption in

    The process of adsorption can occurs in solutions also. This implies that the solid surfaces can also adsorb solutes from solutions. Some clarifying examples are listed below: (i) When an aqueous solution of ethano

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : Colligative property associated question

    Give me answer of this question. Which of the following is not a colligative property : (a)Optical activity (b)Elevation in boiling point (c)Osmotic pressure (d)Lowering of vapour pressure

  • Q : Cations Chromium(III) hydroxide is

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer

  • Q : Colligative property related question

    Select the right answer of the question. Which of the following is not a colligative property : (a) Osmotic pressure (b) Elevation in B.P (c) Vapour pressure (d) Depression in freezing point

  • Q : Question on colligative property Choose

    Choose the right answer from following. Which of the following is a colligative property: (a) Osmotic pressure (b) Boiling point (c) Vapour pressure (d) Freezing point