--%>

competitive equilibrium

8. Halloween is an old American tradition. Kids go out dressed in costume and neighbors give them candy when they come to the door. Spike and Cinderella are brother and sister. After a long night collecting candy, they sit down as examine what they have. Spike finds that he has 40 candy bars and 20 packs of gum. His sister finds she has 30 candy bars and 40 packs of gum. Spike likes candy bars exactly twice as much as gum and would always be willing to trade two packs of gum for one candy bar. Cinderella, on the other hand, likes gum exactly twice as much as candy bars and would always be willing to trade two candy bars for one pack of gum. 

a. Illustrate this situation in an Edgeworth box. Let Spike’s origin be in the lower left, and Cinderella’s be in the upper right hand corner. Put candy bars on the horizontal axis and gum on the vertical. 

b. Now draw in indifference curves for the two agents that reflect the description given above. Indicate the endowment point, and the contract curve. Illustrate a competitive equilibrium. Is there more than one competitive equilibrium? 

#10. Ken McSubstitute and Ron O’Complement were flying to a fast food festival in Fiji when an unexpected storm forced their plane to ditch in the middle of the Pacific. Miraculously, they are washed up on a desert island. Ken finds that he has only 5 slightly wet hamburgers and 15 orders of fries in his pockets. Ron discovers he has 15 hamburgers and 5 orders of fries. Ken only cares about how much he gets to eat. His utility function is: Us(H,F) = H+F. On the other hand, Ron believes that it is uncivilized to eat hamburgers without french fries or french fries without hamburgers. His utility function is: Uc(H,F) = min(H,F). 

a. In an Edgeworth box, show the endowment point, the Pareto Opimal Allocations, and the competitive equilibrium 

b. Is the competitive equilibrium Pareto Optimal? 

   Related Questions in Mathematics

  • Q : Area Functions & Theorem Area Functions

    Area Functions 1. (a) Draw the line y = 2t + 1 and use geometry to find the area under this line, above the t - axis, and between the vertical lines t = 1 and t = 3. (b) If x > 1, let A(x) be the area of the region that lies under the line y = 2t + 1 between t

  • Q : Abstract Algebra let a, b, c, d be

    let a, b, c, d be integers. Prove the following statements: (a) if a|b and b|c. (b) if a|b and ac|bd. (c) if d|a and d|b then d|(xa+yb) for any x, y EZ

  • Q : Problem on sales and budget XYZ Farm

    XYZ Farm Supply data regarding the store's operations follow: • Sales are budgeted at $480,000 for November, $430,000 for December, and $340,000 for January. • Collections are expected

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Who derived the Black–Scholes Equation

    Who derived the Black–Scholes Equation?

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Explain the work and model proposed by

    Explain the work and model proposed by Richardson.

  • Q : Profit-loss based problems A leather

    A leather wholesaler supplies leather to shoe companies. The manufacturing quantity requirements of leather differ depending upon the amount of leather ordered by the shoe companies to him. Due to the volatility in orders, he is unable to precisely predict what will b