--%>

Calculate the surface area available inside heat exchanger

You are working in a company that has developed a process to produce DNA vaccines from E.coli. After the fermentation step a lysis step is used to release the DNA from the cells resulting in a sticky mixture. You find that an aggressive cleaning solution heated to 80°C is required to clean the sticky mixture off the inside of the lysis tank. A counter-current shell-and-tube heat exchanger containing 100 tubes is used to heat the cleaning solution from 10°C to 80°C at a mass flow rate of 8.6 kg s-1. The tubes have external and internal diameters of 11 and 10mm, respectively, and a thermal conductivity of 17 W m-1 K-1. Water enters the shell at 90°C at a mass flow rate of 22 kg s-1. The shell side heat transfer coefficient is 2500 W m-2 K-1.  

         You are given the following data: 

         The following correlation applies for turbulent flow in pipes:

         Nu = 0.023 Re0.8 Pr0.4

 

         Cleaning Solution:

         Thermal conductivity = 0.5 W m-1 K-1

         Viscosity = 1 x 10-3 Pa s

         Specific heat capacity = 3.68 kJ kg-1 K-1

            Density = 1,100 kg m-3

 

         Water

         Specific heat capacity = 4.18 kJ kg-1 K-1

 

a)      Calculate the surface area available inside the heat exchanger. 

b)      You notice that with time the aggressive cleaning solution causes corrosion in the heat exchanger resulting in a build up of layers of rust deposits. If you were to buy a new heat exchanger, suggest ways you could re-specify its design so as to limit the damage by corrosion? 

   Related Questions in Mechanical Engineering

  • Q : Rated Speed and Economic Speed Explain

    Explain difference between the Rated Speed and Economic Speed?

  • Q : Problem related to mass flow rate Water

    Water flows via a control volume as illustrated in the figure below. At Section (1) the diameter is 40 mm and the velocity profile is given by the V(r) = 10 (4 – r2) m/s, here r is the  distance from the centerline. At Section (2) the mass flow r

  • Q : Size and weight in Product design

    Size and weight: If the product is particularly small the cost may be increased if more precise manufacturing methods are demanded. Weight restriction will as well influence materials to be utilized: this in turn will influence the manufacturing proce

  • Q : Ergonomics in product design

    Ergonomics: This is concerned with how easy (comfort, complexity) the product is to use by the targeted market. Physical human dimensions must be considered when designing the driver's seating, instruments, and controls in a car. Slight variations bet

  • Q : Preventing the excess discharge pressure

    How we can prevent the excess discharge pressure?

  • Q : State Concurrent Engineering Concurrent

    Concurrent Engineering has happened primarily as a result of the need to shorten product development times, but improving product quality and reducing product life-cycle costs are important considerations. Some companies have even gone to the extent o

  • Q : Life expectancy in Product design

    Life expectancy: This part of the specification will state how long the product should remain in working order provided the customer gives reasonable care and maintenance. Also take into account technological advances and ongoing improvements that wou

  • Q : Causes and consequences of dynamic

    Discuss the causes and consequences of dynamic loading on structures based on two real examples. Support your discussion with proper diagrams or sketches. Your discussion shall include the time and location of the event, type and source of dynamic loa

  • Q : ANSYS - Finite Element Analysis Hello,

    Hello, is the following project possible.

  • Q : Problem on discharge of water In the

    In the below system, d = 6 in., D = 12 in., Δz1 = 6 ft, and Δz2 = 12 ft. The discharge of water in the given system is 10 cfs. Is the machine a turbine or a pump ? Determine the pressures at points A and B? Neglect head losses. Suppos