--%>

Calculate the surface area available inside heat exchanger

You are working in a company that has developed a process to produce DNA vaccines from E.coli. After the fermentation step a lysis step is used to release the DNA from the cells resulting in a sticky mixture. You find that an aggressive cleaning solution heated to 80°C is required to clean the sticky mixture off the inside of the lysis tank. A counter-current shell-and-tube heat exchanger containing 100 tubes is used to heat the cleaning solution from 10°C to 80°C at a mass flow rate of 8.6 kg s-1. The tubes have external and internal diameters of 11 and 10mm, respectively, and a thermal conductivity of 17 W m-1 K-1. Water enters the shell at 90°C at a mass flow rate of 22 kg s-1. The shell side heat transfer coefficient is 2500 W m-2 K-1.  

         You are given the following data: 

         The following correlation applies for turbulent flow in pipes:

         Nu = 0.023 Re0.8 Pr0.4

 

         Cleaning Solution:

         Thermal conductivity = 0.5 W m-1 K-1

         Viscosity = 1 x 10-3 Pa s

         Specific heat capacity = 3.68 kJ kg-1 K-1

            Density = 1,100 kg m-3

 

         Water

         Specific heat capacity = 4.18 kJ kg-1 K-1

 

a)      Calculate the surface area available inside the heat exchanger. 

b)      You notice that with time the aggressive cleaning solution causes corrosion in the heat exchanger resulting in a build up of layers of rust deposits. If you were to buy a new heat exchanger, suggest ways you could re-specify its design so as to limit the damage by corrosion? 

   Related Questions in Mechanical Engineering

  • Q : Centrifugal Pump and Reciprocating Pump

    Out of Centrifugal Pump or the Reciprocating Pump, which pump is more efficient?

  • Q : Aim of an airspeed indicator in aircraft

    What is the main aim of an airspeed indicator in aircraft?

  • Q : What is machine shop Machine shop : A

    Machine shop: A facility which employs machines to fabricate devices from stock raw materials or to change mechanisms based on given specifications. Also termed as "Back" Shops. The general machines in a machine sh

  • Q : Product performance in Product design

    Product performance: Depending on the product, this may take many forms. Speed, loads to be withstood, number of work cycles, and intermittent or continuous working are some examples of considerations. 

  • Q : What is pneumatic system Pneumatic

    Pneumatic system is a system which employs air to power something. For illustration, have you seen the tube systems at the bank drive-up tellers? Air is employed to push the tubes back and forth from the teller to customer.

    Q : Conformance to standards in product

    Conformance to standards and specifications: These are standards laid down by national and international authorities. For instance, in Canada there is the Standards Council of Canada (SCC). The United States has many standards bodies including MIL (US

  • Q : Define Mechanism Mechanism : The

    Mechanism: The mechanism is a system of moving parts which changes an input motion and force into the desired output force and motion.

  • Q : Difference between PLC and Logic Card

    Difference between PLC and Logic Card: There is technically no difference. Both are logic controller utilized for several applications and in PLC has it's own internal memory (compared to Logic card).

  • Q : Problem on pressure rise of a water tank

    The water level in a tank is about 20 m above the ground. A hose is joined to the bottom of the tank, and the nozzle in the end of the hose is pointed to straight up. The tank is at sea level, and the water surface is open to the environment. In the line leading from

  • Q : Product appearance in Product design

    Product appearance: Strongly influenced by the Industrial Designer, the general style? of the product is significant as this will have an influence on materials and manufacturing procedures to be used. The product should be able to grab the customer's