Dynamic model for the paper machine headbox
Explain and derive the Dynamic model for the paper machine headbox?
Expert
We'll first develop a dynamic model for the paper machine headbox.A stock balance around the headbox. A suffix hb refers to the head box. Accumulation = Input – Outputdmhb/dt = ρqin – ρqoutNow ρ, is the stock density, but since the consistancy is 0.5% only, ρ = ρw = Water densityd(ρVhb)/dt = ρqin – ρqoutdVhb/dt = qin – qoutAhbdh/dt = qin – qoutwhere, Ahb, is the c/s area of header and assumed to be constant. qout, is the flow out of the header, and is only through slice, and can be written as, CAs(2gh)1/2, where As, is the cross sectional area of slice perpendicular to the flow, and C is characteristic constant coefficient for the slice.Hence, Ahbdh/dt = qin – CAs(2gh)1/2,To find, we can write Bernoulli's equation between Vacuum Degasser and Headbox. Suffix vd refers to vacuum degasser. Pvd/ρ + W = (Phb + ρgh)/ρ + V2/2 V = {2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 qin = AinV = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2Hence the dynamic model is, Ahbdh/dt = Ain{2[Pvd - (Phb + ρgh)]/ρ + 2W}1/2 – CAs(2gh)1/2,where the rate of stock height change in head box is related to the pressure in vacuum degasser and height. We have to linearize the non linear dynamic model. So that the effective model will be,τdh'/dt = KpP'hb + Khh',So as we see the the response of the height of stock to variations in vacuum degasser pressure is first order lag. We don't know the dynamics of level sensor or transmitter, but we'll assume it's also first order lag. Hence the effective system will be a second order. And hence it'll be oscillatory, and we propose the PID controller for level control by manipulating the speed of fan pump. Using MATLAB control toobox and given values of the parameters in the problem, we approximately find the following controller parameter settings. Kc = 9.6, τI = 2.3 min, τD = 3.5 min.Similarly, a propotional integral controller is proposed for pressure control in head box.The pressure in the head box is related to in flow of air, which is controlled by PI controller. The air is available at pressure of 300 kPa. dPhb/dt = f(Qin), where is the inlet flow rate of air. This will be pure capacitive system, hence we propose PI controller. We find the controller parameters for this, Kc = 14.5, τI = 4.5 min.
Discuss the causes and consequences of dynamic loading on structures based on two real examples. Support your discussion with proper diagrams or sketches. Your discussion shall include the time and location of the event, type and source of dynamic loa
Air at 20 m/s, 260 K, 75 kPa with 5 kg/s flows into a jet engine and it flows out at 500 m/s, 800 K, 75 kPa. What is the change (power) in flow of kinetic energy?
(i) Formulate the equation of motion for the system shown in Figure below. List two assumptions made in this formulation. (ii) Find the response of this system at t = 3s. The system begins with the displacement of 5 cm and velocity
Out of Centrifugal Pump or the Reciprocating Pump, which pump is more efficient?
Illustrate why several types of the sound are generated in different bikes, although they run on the SI Engines?
What is meant by the term LILO?
What will happen if the gasoline is used within the Diesel Engine, whether the Siesel Engine will work or not?
KINDLY SEND ME MATERIAL ON "MULTISTAGE SPUR GEAR DESIGN OPTIMISATION USING RAY DIAGRAMS"
A diesel engine operates devoid of a spark plug by using the high-temperature gas produced throughout the compression stage to ignite the fuel. During a typical compression, pure air that is originally at 21 °C and 0.95 bar is reversibly and adiabatically compress
Explain the term hard links?
18,76,764
1936282 Asked
3,689
Active Tutors
1415121
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!