--%>

conclusion using p-value and critical value approaches

A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evidence that the variance in the number of patients seen per day is less than 10? Use α = .025 level of significance. What is your conclusion using p-value and critical value approaches. Is the conclusion different in both the cases?

E

Expert

Verified

 

Hypothesis Formation

H0: σ =10

H1: σ < 10

Test Statistics

χ2 = (n-1).S2/ σ2

Critical Region

Reject H0 in favor of alternative if χ2 test statistic lesser than the critical value of χ2

i.e χ2test statistic < critical χ2

Critical value of χ2 at 0.025 Significance Level for single tail test

Df = n – 1 = 9 – 1 = 8

Critical value of χ2 with df 8 and alpha 0.025 = 2.18

Computation

Data (X)

X – X-bar

(X-X-bar)2

24

2.111111

4.45679

26

4.111111

16.90123

21

-0.88889

0.790123

17

-4.88889

23.90123

16

-5.88889

34.67901

23

1.111111

1.234568

27

5.111111

26.12346

18

-3.88889

15.12346

25

3.111111

9.679012

 

Sum of (X-X-bar)2 = 132.89

S2 = 132.89/9-1

     = 16.61 

χ2 = (9-1)*16.61/10

    = 13.29

Decision

As χ2 statistic is not less than critical value, therefore we can’t say that variance is less than 10. P-value for critical value is 0.01 and it is approximately found from χ2 table.  P-value is greater than our tolerance for ambiguity therefore we can’t that variance is significantly lower than 10.

 

   Related Questions in Advanced Statistics

  • Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid

  • Q : Find the cumulative distribution

    You must use the pre-formatted cover sheet when you hand in the assignment. Out full detailed solutions. Sloppy work will naturally receive a lower score. 1. Suppose at each step, a particle moving on sites labelled by integer has three choices: move one site to the right with pro

  • Q : Error probability As of last year, only

    As of last year, only 20% of the employees in an organization used public transportation to commute to and from work. To determine if a recent campaign encouraging the use of public transportation has been effective, a random sample of 25 employees is to be interviewe

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Probability problem A) What is the

    A) What is the probability of getting the following sequence with a fair die (as in dice):B) What is the probability of getting the same sequence with a die that is biased in the following way: p(1)=p(2)=p(3)=p(4)=15%;

  • Q : Problem related to playing cards Cards

    Cards are randomly drawn one at the time and with replacement from a standard deck of 52 playing cards. (a) Find the probability of getting the fourth spades on the 10th draw. (b) Determine the