--%>

Bayesian Point Estimation

What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

E

Expert

Verified

Bayesian Point Estimation:

A) Bayesian Statistics is one way of incorporating prior information about a parameter into the estimation process.

B) Adherents claim that this helps to make the estimation more relevant to the scienti c problem at hand.

C) Opponents counter that it makes statistical inference subjective.

D) The underlying principle of Bayesian statistics also di ers from the more common Frequentist inference that we have covered to date.

E) In Bayesian statistics, all unknown quantities are considered random variables.

F) Thus the parameters of a distribution are now considered random.

G) The usual model is then considered to be a conditional distribution of the data given the parameters.

H) Since the parameter vector θ is considered random it also has a distribution.

I) The marginal distribution of θ is called the Prior Distribution.

J) The prior distribution is supposed to capture our beliefs about θ before the collection of data.

The process of inference in Bayesian statistics is as follows.

1. Specify a conditional distribution of the data given the parameters. This is identical to the usual model speci cation in frequentist statistics.

2. Specify the prior distribution of the model parameters Π(θ).

3. Collect the data, X = x.

4. Update the prior distribution based on the data observed to give a Posterior Distribution of the parameters given the observed data x, Π(θ|x).

5. All inference is then based on this posterior distribution.

   Related Questions in Advanced Statistics

  • Q : Components of time series Name and

    Name and elaborate the four components of time series in brief.

  • Q : Problem on layout A manufacturing

    A manufacturing facility consists of five departments, 1, 2, 3, 4, and 5. It produces four components having manufacturing product routings and production volumes indicated below.   1. Generate the from-to matrix and the interaction matrix. Use a

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Problem on consumers marginal utility

    Consider a consumer with probability p of becoming sick.  Let Is be the consumer’s income if he becomes sick, and let Ins be his income if he does not become sick, with Is < Ins. Suppo

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : Non-parametric test what is the

    what is the appropriate non-parametric counterpart for the independent sample t test?

  • Q : Pearsons correlation coefficient The

    The table below illustrates the relationship between two variable X and Y. A

  • Q : Problem related to playing cards Cards

    Cards are randomly drawn one at the time and with replacement from a standard deck of 52 playing cards. (a) Find the probability of getting the fourth spades on the 10th draw. (b) Determine the

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Variation what are the advantages and

    what are the advantages and disadvantages of seasonal variation